2016 3rd Asia-Pacific World Congress on Computer Science and Engineering

Private Equality Test using Ring-LWE Somewhat Homomorphic Encryption

Tushar Kanti Saha* and Takeshi Koshiba'
Graduate School of Science and Engineering
Saitama University
Saitama, Japan
Email: *s]5dm054@mail.saitama-u.ac.jp,Tkoshiba@mail.saitama-u.ac.jp

Abstract—We propose two secure protocols namely private
equality test (PET) for single comparison and private batch
equality test (PriBET) for batch comparisons of [-bit integers.
We ensure the security of these secure protocols using some-
what homomorphic encryption (SWHE) based on ring learning
with errors (ring-LWE) problem in the semi-honest model.
In the PET protocol, we take two private integers input and
produce the output denoting their equality or non-equality.
Here the PriBET protocol is an extension of the PET protocol.
So in the PriBET protocol, we take a single private integer and
another set of private integers as inputs and produce the output
denoting whether single integer equals at least one integer in
the set of integers or not. To serve this purpose, we also propose
a new packing method for doing the batch equality test using
few homomorphic multiplications of depth one. Here we have
done our experiments at the 140-bit security level. For the
lattice dimension 2048, our experiments show that the PET
protocol is capable of doing any equality test of 8-bit to 2048-bit
that require at most 107 milliseconds. Moreover, the PriBET
protocol is capable of doing about 600 (resp., 300) equality
comparisons per second for 32-bit (resp., 64-bit) integers. In
addition, our experiments also show that the PriBET protocol
can do more computations within the same time if the data
size is smaller like 8-bit or 16-bit.

Keywords-private; equality test; batch equality; homomor-
phic; encryption;

I. INTRODUCTION

Private equality test (PET) is a kind of secure computation
between two users who want to compare their information
for checking the equality without disclosing any information
to each other in case of they do not equal. In this paper, we
use the PET protocol for finding equality of two private
integers. The PET protocol [2] is also known as socialist
millionaire problem [3] which can be used as a sub-protocol
of many large protocols where the private comparison is
required. Moreover, we also show an extension of the
PET protocol called the private batch equality test (Pri-
BET) protocol for securely comparing an integer with &
integers in a single computation where k represents the
block size. Recently, the concept of private ‘batch equality
test’” protocol was introduced by Couteau [4] to show the
equality tests for 16 ~ 128-bit data between two parties.
Here the batch equality of integers means comparing a
single integer from one party with a set of integers from
another party. The PET and PriBET protocols are appealing

978-1-5090-5753-5/16 $31.00 © 2016 IEEE
DOI 10.1109/APWC.on.CSE.2016.11

due to its numerous applications in database queries, data
mining, machine learning, and so on. On the other hand,
cloud computing has established itself as an effective service
after commercialization of Amazon EC2 in 2005 [1]. Now
different organizations such as financial, research, medical,
educational, and so on are uploading their data to the cloud.
But they do not believe the cloud for securing their data.
So they want to secure their data using some encryption
methods. They also want to compute on the encrypted data
without decrypting it. Therefore, homomorphic encryption is
a solution for them which allows meaningful computation
such as addition and multiplication on encrypted data.

The term homomorphic encryption was first coined by
Rivest et al. in 1978 [5]. Later on, many research works
had been proposed using homomorphic encryption scheme
which supports either addition [6], [7], [8] or multiplication
[9], [10] on encrypted data but not both. But only addition or
multiplication in homomorphic computations is not enough
for some extended computations in the fields of bioinfor-
matics, data mining, machine learning, and so on. In 2005,
Boneh et al. [11] proposed a homomorphic encryption which
supports a number of additions and one multiplication. But
one multiplication is not enough for many computations.
In 2009, Gentry did the ground-breaking work of fully
homomorphic encryption (FHE) which supports a number
of additions and multiplications [12]. Gentry constructed
FHE scheme by applying the bootstrapping technique in
somewhat homomorphic encryption (SWHE). But FHE tech-
nique is still far from practical implementation due to its
slowness in computations [13]. Moreover, Brakerski and
Vaikuntanathan [15] proposed another somewhat homomor-
phic scheme using the ring learning with errors (ring-LWE)
concept of Lyubashevsky et al. [14]. In this article, we
use SWHE [15] because it works faster than FHE and
supports many additions and a few multiplications. Now
organizations are interested doing the secure computation in
an on-line auction, genomic computation, machine learning,
data mining, and so on where the PET protocol is necessary
for doing the equality tests.

In addition, nowadays people in many countries are
required to use sensitive information like social security
number (SSN) to open accounts in banks, credit card com-
panies, insurance companies, and some other financial orga-

@) CO‘ pute
1(!) I
& SOCIety

nizations. They are taking services from hospitals, clinics,
gas company, water supplier companies, electric companies,
and so on. They are also using their credit card number
to pay the bills of their shopping, hospitals, utilities, and
others. Furthermore, they are complaining their insurances
during paying their bills wherever necessary. Therefore,
these organizations need to securely verify their customers’
profile using SSN with a huge dataset of another company
containing many SSNs. Due to the availability of SWHE
in the cloud, organizations are eager to outsource their
computations where the PriBET protocol may play a major
role.

II. PRIOR WORKS

In this section, we review some literature for the PET and
PriBET protocols. To date, very few protocols have been
proposed for the PET protocol. In 1996, Fagin et al. [2]
first proposed the PET protocol to show that the two people
possess same information without revealing any information
to each other in case of they do not. In 2005, Li and Wu [16]
presented the PET protocol using additively homomorphic
encryption scheme of Paillier [8] in the semi-honest model.
But additively homomorphic encryption is not enough for
doing some extended computations. In 2011, Ciou and Tso
[17] proposed another privacy preserved two-party equal-
ity testing protocol using commutative encryption scheme.
But none of these protocols addressed the implementation
showing their practicality. In 2015, Ardestani [18] showed
the implementation of the PET protocol for malicious ad-
versaries using oblivious transfers. But it took about one
minute to compare 80-bit input which is impractical to
implement in the cloud. In addition, Couteau [4] recently
addressed the PriBET protocol in the semi-honest model
that required 7 rounds communication between two-party to
compare data size of 16 ~ 128-bit. But they did not show
any implementation. To understand the practicality of these
protocols, some implementations are indispensable.

III. APPLICATIONS

In this section, we explore some of the application areas
of the PET and PriBET protocols. These applications are
discussed below.

A. On-line auction

For some on-line auctions, sometimes it is required to
perform the verification after finalizing the winner by the
auctioneer. Here winning bid value is an important informa-
tion for the both the auctioneer and winner. But a bidder who
lost the auction may request the auctioneer to verify his bid
value with the winning bid value where our PET protocol
can solve this problem. Our PET protocol is not only useful
in the on-line auction verification process but also useful for
checking the equality of two bid values during the auction
[19].

B. Genomic computation

Nowadays the importance of privacy-preserving genomic
computation is increased because it can discover human
personal DNA, RNA or protein profile [20] from some
genomic databases without disclosing those databases to the
public. Furthermore, research organizations, hospitals, and
laboratories are now interested in storing these kinds of
sensitive information in the cloud server after encryption.
They also want to do the genomic computation using these
encrypted data. A genomic computation like edit distance
computation [21] requires the PET protocol as a sub-pro-
tocol. Moreover, the PET protocol can be used for large
DNA string matching computation. In addition, the PriBET
protocol can be used for exact DNA matching in some large
databases.

C. Machine learning and Data mining

The PET protocol has many applications in machine
learning as a sub-protocol. Bost et al. [22] used argmax and
argmin functions of machine learning classifiers where the
PET protocol is necessary for finding the equality along with
the comparison protocol. In addition, Lindell and Pinkas [23]
used the PET protocol to do the multi-party computation for
privacy-preserving data mining applications.

D. Private Database Query Processing

The private batch equality test (PriBET) protocol is useful
where a single data is needed to compare with many data
to find the equality. We know that credit card number and
social security number (SSN) are very important information
for every person. Our PriBET protocol can be used by an
on-line shop to securely check the credit card number with
some large databases. Moreover, a hospital or clinic can use
the PriBET protocol to securely check particular customer’s
health insurance by using SSN with the database of the
corresponding insurance company.

Notations: Z and R denote the ring of integers and the
field of real numbers respectively. For a prime number
g, the ring of integer is denoted by Z,. In addition, Z"
defines an n-dimensional integer vector space. For a vector
A = (ap,a1,...,a,_1), the maximum norm of ||A|s is
defined as max |a;|. Let (A, P) denote the inner product
between two vectors A and P. Moreover, the function
Enc(m,pk) = ct defines the encryption of message m
using the public key pk to produce the ciphertext ct. The
ciphertexts ctyqq and ct,,,; denote homomorphic addition
and multiplication of ciphertexts ¢t = Enc(m,pk) and
ct’ = Enc(m/, pk). The distribution Dz~ indicates the n-
dimensional discrete Gaussian distribution. Here k € Z
represents the block size of the comparison for the PriBET
protocol.

IV. OUR PrROTOCOL

Here we describe the private equality test (PET) and pri-
vate batch equality test (PriBET) protocols in the following
sub-section.

A. The PET Protocol

To describe this private equality test protocol, let us
consider a private on-line auction blind verification scenario.
Suppose Alice is an auctioneer who has decided the final
bid value of her auction. On the other hand, a bidder who
has lost the auction wants to verify winning bid value. Here
they do not want to reveal their private values if they do
not match, but want to get an equality comparison result.
To solve this problem, a third party like Bob in the cloud
will do the computation on behalf them without knowing the
actual values. In this comparison scenario, let Alice has an
l-bit integer as a = (aq,...,a;) and the bidder has another
I-bit integer as b = (b1,...,b;). Here, we know that the
Hamming distance H ;s between two [-bit integers can find
out their equality. If Hy;s = 0 for two integers comparison,
then we say that those are equal. Here our equality test for
single comparison can be realized by the following equation.

l l
C:Z|al*bl| :Z(al+b172albl) (1)
i=1 i=1
Here ¢ indicates the Hamming distance between
two integers a and b. So if ¢ = 0 then we can
say that a = b; otherwise a # b. Now we can
describe the PET protocol by the following steps.

Inputs: ¢ = (a1,...,a;) and b = (by,...,b).
Output: a =bora#b
PET protocol:
1) Alice generates the public key and private key by
herself and sends the public key to the bidder through
a secure channel. Then she encrypts the final bid value
a = (ay,...,a;) using her public key and sends it to
Bob.
2) The bidder also uses Alice’s public key to encrypt his
bid value b = (b1, ..., b;) and sends the value to Bob.
3) Bob does the secure computation of integers equality
test as in Eq.(1) and sends the encrypted result ct,,
to Alice to verify whether ¢ = 0.
4) Alice decrypts ct,, using her secret key and checks
the value of ¢ and sends the acknowledgment to Bob
as 0 if ¢ = 0; otherwise, she sends 1.
5) Then Bob decides either a = b or a # b depending on
the acknowledgment.

B. The PriBET Protocol

Suppose a patient has taken a service from a hospital
and complaining his health insurance during paying his bill.

Now hospital (Alice) wants to check the patient’s health
insurance using his social security number (SSN). Since SSN
is an important information for the patient, so the hospital
cannot disclose its patient information along with SSN to the
insurance company. On the contrary, the insurance company
cannot disclose its k customers’ information to the hospital.
To solve this problem, a third party like Bob in the cloud
will do the computation on behalf them without knowing the
actual values. In this comparison scenario, let Alice has an
[-bit integer as a = (ay,...,a;) and insurance company has
k number of I-bit integers as b,, = (b1, ,bm,1) Where
1 < m < k. Moreover, we know that the Hamming distance
Hg;s between two [-bit integers can find out whether they
are equal. If Hy;s = 0 for two integers comparison, then
we say that those are equal. Here, if a = b,, for some
1 < m < k, then we have two option for the security of
index m; either we cannot know the value of m, or we can
specify such m. In our PriBET protocol, Alice can know
such index m. Since such index is not actual index that
exists in the databases of the insurance company, so leakage
of such information to Alice does not harm the security of
our protocol. In addition, if @ = b,, for some 1 < m < k
then Alice sends only the acknowledgment to Bob regarding
equality without leaking any information about the index m
to Bob. For some 1 < m < k, our equality test for batch
comparisons can be realized by the following equation.

I
dp = las
i=1

Here, d,, defines the Hamming distance between two
binary vectors a and b,,. Moreover, if d,, in Eq.(2)
is 0 for some positions of m then we can say that
a = by,; otherwise a # b,,. In this way, Alice securely
verifies her customer with the help of Bob. Now we
can describe our PriBET protocol by the following steps.

1
— b i| = Z(ai +bm,i — 2a;bmi) (2)

i=1

Imputs: ¢« = (a1,...,a;) and {by,bo,...,b}, where
b = (b1, .., 0m,) for each m in {1,2,...,k}.

Output: Imfa = by, or Vm|a # b,

PriBET protocol:

1) Alice generates the public key and private key by
herself and sends the public key to the insurance
company through a secure channel. Then she encrypts
the SSN a = (a1,...,a;) of her patient using her
public key and sends it to Bob.

2) The insurance company also uses Alice’s public key
to encrypt & SSNS by, = (b 1,...,bm,) Where 1 <
m < k and sends the value to Bob.

3) Bob does the secure computation of batch equality
test as in Eq.(2) and sends the encrypted result ct,.,
to Alice to verify whether at least one of d,,’s is equal
to 0.

4) For 1 < m < k, Alice decrypts ct,, using her

secret key and checks each value d,, and sends the
acknowledgment to Bob as O for at least one of the
d,, = 0; otherwise, she sends 1.

5) Then Bob decides the equality or non-equality depend-
ing on the acknowledgment.

Remark 1. Here the both of our protocols are secure under
the assumption that Bob is semi-honest (also known as
honest-but-curious), i.e., he always follows the protocols but
tries to learn information from the protocols.

V. SECURITY OF THE SCHEME

In this section, we review the asymmetric SWHE scheme
in [24] and its correctness. In 2011, Brakerski and Vaikun-
thanathan [15] proved the correctness of this scheme.

A. Asymmetric SWHE Scheme

In 2015, Lauter et al. [24] showed a SWHE scheme which
is a public key variant of BV’s SWHE scheme [15]. For the
SwHE scheme in [24], we need to consider some parameters
as follows.

o f(z):is a cyclotomic polynomial where f(z) = 2" +1.

« n: an integer which represents the lattice dimension of
the ring R, = Z,/f(z). Here n also represents the
degree of polynomials which is a power of 2 such as
1024 or 2048.

e ¢: modulus ¢ is an odd prime such that ¢ = 1(mod
2n) defining the ring R, = R/qR = Z,/{f(x)) which
denotes a ciphertext space.

e 1: a prime t < g, which defines the message space of
the scheme as R, = Z.[z]/(f(x)), the ring of integer
polynomials modulo f(z) and ¢.

e 0: is a parameter which defines a discrete Gaussian
error distribution x = Dyz» , with an n-dimensional
integer vector Z" and a standard deviation o where
oc=4~8.

Now we can discuss the key generation, encryption, homo-
morphism, and decryption properties of SWHE scheme in
[24] as follows:

1) Key generation: Generate a ring element R 3 s < x
for our secret key sk = s. We then sample a uniformly
random element a; € R, and an error i > e < x. Now we
get the public key pair as pk = (ag, a1) with ag = a1s+ te.

2) Encryption: For a given message m € R, and a public
key pk = (ag,a1), the encryption algorithm first samples
R > u,f,g < x then encryption can be defined by a
ciphertext pair (cg,c1) = ct as follows.

Enc(m, pk) = (co,c1) = (apu+tg+m, —(aru+tf)) (3)

Here, the plaintext m € R; is also in R, because ¢ < gq.

3) Homomorphic Operations: Generally, homomorphic
operations like addition (H) and multiplication (X) are
between two ciphertexts ¢t = (cg,...,Co) and ct’ =
(¢s---»¢5). So the homomorphic operations between two
ciphertexts can be defined as follows.

Ctogqa = ctBect' = (Co + Cl7 -+ Cmaz(a,8) T C/mal.(a’g))

a+p ‘ a ‘ B)
Ctmul = ct R ct’ = Z 6zt = (Zciz’) (Zc;z]>

i=0 i=0 =0
“4)

In addition, we can also define the subtraction as similar to
component-wise addition.

4) Decryption: For a fresh or homomorphically operated
ciphertext ¢t = (cg, ..., cq) and t € Ry, general decryption
can be defined as

Dec(ct, sk) = [m], mod ¢t (5)

where m = Y 0 c;s'. For the secret key vector
s = (1,s,52,...), we can simply rewrite Dec(ct,sk) =
[ct, s]; mod t. For example, a fresh ciphertext ¢t = (co, ¢1)
generated by (3) then we have

(ct,s) = (aputtg+m)—s-(aruttf) = m+t-(uet+g—sf)

(6)
in the ring R, since ag —ays = te. If the value m+t- (ue+
g—sf) does not wrap-around mod ¢ (all errors e, f, g, u < x
must be sufficiently small) then we have [(ct,s)], = m +t-
(ue + g — sf) in the base ring R. Here, it is clear that we
can recover plaintext m by mod ¢ operation. In addition, for
two ciphertexts ct; and cte, we clearly have the following
by the homomorphic operation if no wrap-around happens
in the encrypted results after homomorphic operations.

{ (cty B ety,s) = (ct1,s) + {(cta,s)

(ct1 W cta,s) = (ct1,s) - (cta,s) 7

B. Security of Our Scheme

We can show the security of our scheme by the poly-
nomial ring-LWE assumption (ring-LWE,, , ,) as done by
Lauter et al. [24] for the given parameters (n,q,t,0). Let
the ring Ry = Zq/f(x) where f(x) = (2™ + 1) be the
cyclotomic polynomial of degree n. Let s <~ x = Dz» , be
a uniformly random ring element. The assumption holds for
any polynomial number of samples of the form

(ai,bi = a; - s +¢;) € (Ry)?

where a; is uniformly random in R, and e; is drawn from
the error distribution . Here the a;’s are uniformly random
in R, and b;’s (b; = a; - s + ¢;) are also uniform in R,.
Therefore, it is hard to distinguish (a;, b;) from a uniformly
random pair (a;,b;) € (R,)?. Besides, Lyubashevsky et al.
[14] showed that the ring-LWE assumption is reducible to
the worst-case hardness of problems on ideal lattices that is
believed to be secure against the quantum computer.

Remark 2. Recently, Castryck et al. [28] showed provably
weak instances of ring-LWE. But these kinds of weak
instances do not affect our scheme.

C. Correctness of SWHE Scheme

The correctness of our scheme depends on how the
decryption can recover the original result from the ciphertext
after some homomorphic operations. We can write the
decryption process as follows.

{ Dec(ctqqa, sk) = Dec((ct B et'), sk) = m +m’ ®)

Dec(ctmui, sk) = Dec((ct X ct’), sk) = m - m’

Actually, the above process is already described in Section
1.1 in [15]. Here, ciphertext ¢t and ct’ comes from m € R,
and m’ € R, respectively after encryption. The encryption
scheme in Section V-A is the presentation of SWHE and its
holds if the following lemma holds as shown in [27].

Lemma 1 (Condition for successful decryption). For a
ciphertext ct, the decryption Dec(ct, sk) recovers the correct
result if (ct,s) € R, does not wrap around mod g, namely,

if the condition [|{(ct, s)|lcc < % is satisfied where [|a o =

max |a;| for an element a = Y ;" € R,. Specifically,
for a fresh ciphertext ct, the co-norm ||{ct, s})|| is given by
|lm +t(ue + g — sf)|lco. Moreover, for a homomorphically

operated ciphertext, the co-norm can be computed by (7).

VI. PACKING METHOD

Packing method is the process of encoding many bits in a
single polynomial. Lauter et al. [24] used a packing method
for efficient encoding of an integer in a polynomial ring
to facilitate arithmetic operations (see Section 4.1 in [24]
for details). For example, consider a binary vector M =
(10101011) with I = 8, it is encoded as Poly(M) = 1 +
x + 22 + 2° 4+ 27 using the packing method in [24]. Here
we first review some packing methods and also discuss our
packing method in the following subsections.

A. Review of Packing Method

Yasuda et al. [27] modified packing method of Lauter
et al. [24] to perform secure inner product for computing
the Euclidean and Hamming distances. Thereafter, Yasuda
et al. [25] used the packing method in [27] to do privacy-
preserving wildcards pattern matching between the text and
single pattern using few polynomial multiplications. Here
we like to compute the Hamming distance ¢ as in Eq. (1)
between two [-bit integer vectors A = (ag,...,a;—1) € Ry
and B = (bo,...,bi—1) € R;. Therefore, we need two
packing method as defined by Yasuda et al. [27]. Moreover,
for the ease of computation of the Hamming distance c as
in Eq. (1), we slightly modify packing method of [27] in the
ring R = Z[z]/(2™ + 1) for the integer vectors A and B

with [< n as

-1
Poly,(A) = Zaixi
i1 ©)
Polys(B) = Z bjxl_(j"'l) .
=0

Inner product property. Consider two same integer vectors
A and B of length [. We already know that inner product
of two vectors helps the Hamming distance computation. So
the polynomial multiplications of Poly,(A) and Poly,(B)
in the base ring R can be represented as

-1 ‘ -1
(Z aw”) X < Z bjxl_(j"'l))
i=0 §=0

—11-1) ‘
= Y bt
i=0 j=0
-1
=) aibiz'™" + ToHD + ToLD
=0
= (A, B)z'~! + ToHD + ToLD. (10)

Here, (A, B) define the inner product of two vectors A and
B. Moreover, the ToHD (terms of higher degree) means
deg(x) > | — 1 and the ToLD (terms of lower degrees)
means deg(z) < [— 1. The result in Eq.(10) shows that
one polynomial multiplication includes the inner products
of (A, B). In addition, the following Proposition is needed
to hold for computing the inner product over packed cipher-
texts.

Here the packed ciphertexts for Poly;(A) € R are defined
for some ¢ = 1,2,3 as

ct;(A) = Enc(Poly,(A), pk) € (R,)?. (11)

Proposition 1. Let A = (ag,...,a;_1) € Ry and B =
(boy...,bi—1) € Ry be two integer vectors of length [. If
the ciphertext of A and B can be represented as ct1(A)
and cto(B) respectively by Eq. (11) then under the condition
of Lemma 1, decryption of homomorphic multiplication
ct1(A) W cto(B) € (R,)?* will produce a polynomial of R;
with 2!~ 1 including coefficient (A, B) = Zi;é a;b; mod t.
Alternatively, we can say that homomorphic multiplication
of ct1(A) and cty(B) simultaneously computes the inner
product (A, B) for 0 <i < (I —1).

B. Our Packing Method

We want to compute the multiple Hamming distance
d, as in Eq.(2) using few polynomial multiplications. To
understand the multiple Hamming distance, let us form
an integer vector A = (ag, - ,a;—1) from a binary the
vector a = (a1, - ,a;) of length [. Moreover, let us

consider the binary vectors by, = (by,1,- - ,bm,) Where
1 < m < k. Then we form another integer vector P =
(b1,0---b14-1,---,bk0--bgi—1) by taking each vector b,,
where the length of each sub-vector of P is [. . Here the
multiple Hamming distance means the distances between the
vector A and each sub-vector in P. So we need to define
another packing method than that in [27].

Consider two same integer vectors A = (ag, -+ ,a;-1) €
Ry oflengthland P = (b1 b1j—1,...,bk0" - bki—1) €
R; of length k£ - . Here we need to find the Ham-
ming distances between A = (ag,...,a;—1) and P, =
(bm,0,---,bm,i—1) with 1 < m < k. Moreover, we know
from [27] that the secure inner product (A, P,,) helps to
compute the Hamming distance between A and FP,,. Here
we pack these integer vectors by some polynomials with the
highest degree(z) = n in such a way so that inner product
(A, P,,) does not wrap-around a coefficient of x with any
degrees. For the integer vectors A and P with n > k- and
1 < m < k, the packing method of [27] in the same ring
R =Z[z]/(z™ 4 1) can be rewritten as

-1
Poly,(A) = Z a;x’
=0 (12)

k 1-1
POly?)(P) = Z Z b’m,jxl'mi(j+1) .

m=1 j=0

Here the multiplication of the above two polynomials helps
the inner product computations which in turn helps the mul-
tiple Hamming distances computation between A and P,,.
Here each Hamming distance can be found as a coefficient
of x with different degrees.

Inner product property. Consider the above two vectors
A and P again. We already know that inner product of two
vectors helps the Hamming distance computation. So the
polynomial multiplications of Poly,(A) and Polys;(P) in
the same base ring R can be represented as

-1 k 1-1
(Zaixi> % (Z memem(Hl))
i=0 m=1 ;=0
k 1-11-1
m=1i=0 j=0
kE 1-1
= > > aibpa'™ " + ToHD + ToLD
m=1 1=0
k
= Z (A, P,)2"™=! + ToHD + ToLD. (13)

m=1

Here, A is the vector of length [and P,, is the m-th sub-
vector of B with 1 < m < k. Moreover, the ToHD (terms
of higher degree) means deg(x) > l-m — 1 and the ToLD
(terms of lower degrees) means deg(z) < I-m — 1. The
result in Eq.(13) shows that one polynomial multiplication

includes the multiple inner products of (A, P,,). In addition,
the following Proposition is needed to hold for computing
the multiple inner products over packed ciphertexts.
Proposition 2. Let A = (ap,a1,...,a1—1) € Ry
be an integer vector where |[A] = [and P =
(b1,0---b14-1,---,bg0--bgi—1) € Ry be another integer
vector of length k -[. For 1 < m < k, the vector P
includes k sub-vectors where the length of each sub-vector
is [. If the ciphertext of A and P can be represented
as ct1(A) and ct3(P) respectively by Eq.(11) then under
the condition of Lemma 1, decryption of homomorphic
multiplication ct; (A)Xcts(P) € (Ry)? will produce a poly-
nomial of R; with '™~ including coefficient (A, P,,) =
Zé;é aiby, ; mod t. Alternatively, we can say that homo-
morphic multiplication of ¢ty (A) and ct2(P) simultaneously
computes the multiple inner products for 1 < m < k and
0<i<(l-1).

VII. SECURE COMPUTATIONS OF OUR PROTOCOLS

We discuss secure computation of the PET and PriBET
protocols (see Section IV for details) in the following
subsections.

A. The PET Protocol

We can do the computation of the private equality test
(PET) protocol using the SWHE scheme in Section V and
the packing method in Section VI-A. In addition, according
to Eq.(1), we need to find out the values of the Hamming
distance c. Let us consider two [-bit integer a = (a1, ..., a;)
and b = (by,...,b;). From these integers, we form two
integer vectors as A = (ag,a1,...,a4;—1) € R; and
B = (bg,b1,...,bi—1) € R from which ¢ can be computed.
Here, ¢ is computed by the Hamming distance between A
and B using the arithmetic computation as

-1
c= (a;+b; —2ab;). (14)
i=0

Computation over packed ciphertext. The packed ci-
phertext is defined by an encrypted polynomial where the
polynomial is generated from an integral vector using some
packing methods. For the above two integer vectors A and
P, the Hamming distance c in Eq.(14) can be computed by
the packing method in Eq. (9) and inner product property in
Eq. (10). Moreover, the packed ciphertext of the vectors A
and B is computed by the Eq.(11). So ¢ is computed from
Proposition 1 and the packed ciphertext vector ct1(A4) € R,
and cty(B) € R, in three homomorphic multiplications and
two homomorphic additions as ct,, equals

Ctl(A) X Ctg(‘/l) H Ct2(B> &Ctl(‘/l) H (—2Ct1(A) X Ctg(B))

where V; denotes another integer vector (1,...,1) of length
[. The above encrypted polynomial ct,, includes many
Hamming distances between the sub-vectors of A and sub-
vectors of B. Here we need the Hamming distance c in Eq.

(14). Bob sends ct,, to Alice for decryption. According to
Proposition 1 and our PET protocol, Alice decrypts ct,,
in the ring R, using her secret key and extracts c as a
coefficient of x'~! from the plaintext of ct,,. Then Alice
checks whether ¢ = 0 or not to help Bob to decide either
a=0boraz#b.

B. The PriBET Protocol

We can do the computation of private batch equality test
(PriBET) protocol using the SWHE scheme in Section V and
the packing method in Section VI-B. In addition, according
to Eq.(2), we need to find out the values of the multiple
Hamming distance d,,,. Let us consider two [-bit integers
a=(ai,...,a;) and by, = (b 1, .., bm,1). From these in-
tegers, we form two integer vectors as A = (ag,...,a1-1) €
R; and P = (bl,O [bl,l—la - ,bk’() [bk,l—l) € R; from
which d,, can be computed. Here, for 1 < m < k, d,, is
computed by the multiple Hamming distance between A and
P,,, using the arithmetic computation as

-1
A = (i + byni — 200 i) - (15)
=0

Computation over packed ciphertext. For the above two
integer vectors A and P, the multiple Hamming distance d,,
in Eq. (15) can be computed by the packing method in Eq.
(12) and inner product property in Eq.(13). Moreover, the
packed ciphertext of the vectors A and P is computed by
the Eq.(11). So d,,, is computed from Proposition 2 and the
packed ciphertext vector ct1(A) € R, and ct3(P) € R, in
three homomorphic multiplications and two homomorphic
additions as ct,, equals

Ctl(A) X Ctg(Va) tH Ctg(P) cty (‘/l) H (—2Ct1(A) X Ctg(P))

where V,, denotes an integer vector like (1,...,1) of length
k -1 and V; denotes another integer vector (1,...,1) of
length [. The above encrypted polynomial ct,, includes
many Hamming distances between the sub-vectors of A and
sub-vectors of P,,. Here we need the Hamming distance
d,, in Eq.(15). Bob sends ct,, to Alice for decryption.
According to Proposition 1 and our PriBET protocol, Alice
decrypts ct,, in the ring R, using her secret key and extracts
d,,, as a coefficient of '™~ from the plaintext of ct,.,. Then
Alice checks whether at least of one of the d,, contains O
or not to help Bob to decide either equality or non-equality.

VIII. PERFORMANCE EVALUATION

In this section, we experimented our PET and PriBET
protocols and measured their performance. So we discuss
used parameters of our experiments and their security levels.
Here, we also discuss the performance of our protocols using
ring-LWE SwHE.

A. Chosen Parameters and Security Level

As discussed in Section V, we need to consider appro-
priate values of the parameters (n,q,t,o) for successful
decryption and to achieve a certain security level. Here, we
need the lattice dimension to be greater than n > [and
n > k-1 for our PET and PriBET protocols respectively
as mentioned in Section VI. Here we compare two integers
of length [= 8 ~ 2048-bit in the PET protocol. For this
reason, we choose the lattice dimension n = 2048. We
also consider [= 2049 ~ 4096-bit with lattice dimension
n = 4096 for integers comparison in the PET protocol. In
addition, we can do n/l comparisons in one computation
using the PriBET protocol where the lengths of integers [
are 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit. Furthermore,
we set t = 2048 for our plaintext space R;. According
to the work in [24], we choose ¢ = 8 and value of ¢
must be greater than 16n%t?c* = 24.222.222.212 = 260 for
the ciphertext space R,. Therefore, we fix our parameters
as (n,q,t,0) = (2048, 61 bits, 2048, 8). For our PriBET
protocol, for lattice dimension n = 2048, we set the value of
the block size k as 256, 128, 64, 32, and 16 for the integer
size 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit respectively.
In addition, for lattice dimension n = 4096, we also set
the value of the block size k as 512, 256, 128, 64, and
32 for the integer size 8-bit, 16-bit, 32-bit, 64-bit, and
128-bit respectively. As shown in Table 2 in [26], our
parameters setting provides 140-bit security level to protect
the security algorithm from some distinguishing attacks.
In addition, NIST [29] defines various security levels for
different security algorithms and their corresponding validity
periods. They declare that a minimum strength of 112-bit
level security has a security lifetime up to 2030. They also
declare that a security algorithm with a minimum strength
of 128-bit level security has a security lifetime beyond 2030.

Remark 3. For the PET protocol in Section IV, integers
comparison of 8 ~ 2048-bit is enough for practical consider-
ation. We also considered the comparison for 2049 ~ 4096-
bit with lattice dimension n = 4096 in the PET protocol to
show the performance of any two binary string comparison
of 2049 ~ 4096-bit.

Table I
PERFORMANCE OF THE PET PROTOCOL
Integer size dilrﬁggii)n Security Total time
(bits) (n) q level (milliseconds)
61
8 ~ 2048 2048 . 140 93
bits
61
2049 ~ 4096 4096 . 391 171
bits

Table II
PERFORMANCE OF THE PRIBET PROTOCOL

Intpger Bl_ock No. of_ _Lattic_e Security
size size compari- | dimension q level
(bits) (k) son/sec. (n)

8 256 2348
16 128 1174
32 64 587 2048 61 bits 140
64 32 293
128 16 146
8 512 2994
16 256 1497
32 128 748 4096 61 bits 391
64 64 374
128 32 187

B. Implementation Results

Here Table I and Table II show the performances of our
PET and PriBET protocols respectively. Here, we imple-
mented our protocols in C programming language with Pari
C library (version 2.7.5) [30] and ran on a single machine
configured with one 3.6 GHz Intel core-i7 CPU and 8 GB
RAM in Linux environment. Our PET protocol took only
107 ms (milliseconds) and 171 ms for comparing any two
integers of 8 ~ 2048-bit and 2049 ~ 4096-bit respectively
as shown in Table I. On the other hand, Table II shows the
performance of our PriBET protocol for lattice dimension
2048 and 4096. For lattice dimension 2048, our PriBET
protocol was able to do about 2348 (resp., 1174) equality
comparisons per second for the small integer size of 8-
bit (resp., 16-bit). In addition, it also did about 587 (resp.,
293) equality comparisons per second for practical integer
size of 32-bit (resp., 64-bit) integers as shown in Table II.
Finally, our PriBET protocol did about 146 comparisons per
second for the large integers of 128-bit. Again for lattice
dimension 4096 and the integer size 8-bit, 16-bit, 32-bit,
64-bit, and 128-bit, our PriBET protocol was able to do
about 2994 comparisons per second, 1497 comparisons per
second, 748 comparisons per second, 374 comparisons per
second, and 187 comparisons per second with the block
size as 512, 256, 128, 64, and 32 respectively. Here, the
PriBET protocol showed a better performance for the lattice
dimension 4096. As discussed in [26], we achieve 140-bit
security level for our both protocols for the lattice dimension
2048. Furthermore, our PriBET protocol achieves 391-bit
security level for the lattice dimension 4096. In addition,
our PET and PriBET protocols require a communication
complexity of O(llogq) and O(k - llog q) respectively.

Remark 4. Our experiments show that our protocols are
practically usable. Our PriBET protocol is also able to

handle large integers with a large block size if we would
increase the lattice dimension n.

IX. CONCLUSION

Throughout this article, we discussed our PET and PriBET
protocols using ring-LWE based SWHE scheme for doing
private equality tests of integers in the semi-honest model.
Here we also presented our experimental results to show
the real world scenarios. Our PET protocol is able to do any
comparison between 8 ~ 2048-bit of two integers within 107
ms. So the PET protocol is useful for large string matching
computations. Furthermore, our PriBET protocol was able
to perform acceptable numbers of equality comparisons per
second for 8 ~ 128-bit integers. Moreover, we can conclude
from our experiments in PriBET protocol that if bit size
of integers increases (resp., decreases) then the number of
comparison per second decreases (resp., increases). We hope
that our PriBET protocol is a fruitful solution using SWHE
scheme to address different types private equalities queries
in databases. Note that our code is not fully optimized;
Therefore, we hope that the optimized code would produce
better results.

ACKNOWLEDGMENT

This research is supported by KAKENHI Grant Numbers
JP26540002, JP24106008, and JP16HO175.

REFERENCES

[1] Saha, T.K. Saha and A.B.M. Ali, “Storage cost minimizing
in cloud - a proposed novel approach based on multiple
key cryptography”, in 1st Asia-Pacific World Congress on
Computer Science and Engineering (APWC on CSE), IEEE,
2014, pp. 1-9.

[2] R. Fagin, M. Naor, and P. Winkler, “Comparing information
without leaking it,” Communications of the ACM, vol. 39, no.
5, pp.77-85, 1996.

[3] M. Jakobsson and M. Yung, “Proving without knowing: On
oblivious, agnostic and blindfolded provers”, in Advances in
Cryptology-CRYPTO. Springer, 1996, pp. 186-200.

[4] G. Couteau, “Efficient secure
Cryptology ePrint Archive,
http://eprint.iacr.org/2016/544.

comparison protocols”,
Report 2016/544, 2016,

[5] R. L. Rivest, L. Adleman, and M. Dertouzos, “On data banks
and privacy homomorphisms,” in Foundations of Secure Com-
putation, R. DeMillo, Ed. et al. London, U.K.: Academic, 1978,
pp- 169-179.

[6] S. Goldwasser and S. Micali, “Probabilistic encryption & how
to play mental poker keeping secret all partial information,” in
Proc. ACM Symp. Theory Comput., San Francisco, CA, USA,
1982, pp. 365-377.

[7]1 J. D. Cohen and M. J. Fischer, “A robust and verifiable
cryptographically secure election scheme,” in 26th Annual
Symposium on Foundations of Computer Science. Portland,
OR: IEEE, 1985, pp. 372-382.

[8] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Proc. Eurocrypt: Advances in
Cryptology, ser. Lect. Notes Comput. Sci. Berlin, Germany:
Springer-Verlag, 1999, vol. 1592, pp. 223-238.

[9] R. L. Rivest, A. Shamir, and L. Adleman. “A method for
obtaining digital signatures and public-key cryptosystems,”
Commun. ACM, vol. 21, no. 2, pp. 120-126, February 1978.

[10] T. ElGamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” in Advances in Cryp-
tology. Springer Berlin Heidelberg, 1985, vol. 196, pp. 10-18.

[11] D. Boneh, E. Goh and K. Nissim, “Evaluating 2-DNF formu-
las on ciphertexts”, in Proceedings of Theory of Cryptography
(TCC), Springer, 2005, pp 325-341.

[12] C. Gentry, “Fully homomorphic encryption using ideal lat-
tices,” in Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009, 2009, pp. 169-178.

[13] Y. Hu, “Improving the efficiency of homomorphic encryp-
tion schemes,” PhD diss., May 2013, Worcester Polytechnic
Institute, Massachusetts.

[14] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices
and learning with errors over rings”, in proceeding of Advances
in Cryptology—EUROCRYPT. Springer, 2010, vol. 6110, pp 1-

s

[15] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic
encryption from ring-LWE and security for key dependent
messages,” in CRYPTO, ser. Lect. Notes Comput. Sci. Berlin,
Germany: Springer-Verlag, 2011, vol. 6841, pp. 505-524.

[16] R. Li and C. K. Wu, “Co-operative private equality test”, I.
J. of Network Security, vol.1, no. 3, pp. 149-153, 2005.

[17] S.E Ciou and R. Tso, “A privacy preserved two-party equality
testing protocol,” in Fifth International Conference on Genetic
and Evolutionary Computing (ICGEC), IEEE, August:2011,
pp. 220-223.

[18] N. K. Ardestani, “Efficient Non-Interactive Secure Two-
Party Computation for Equality and Comparison,” PhD diss.,
University of Calgary, 2015.

[19] T. Mitsunaga, Y. Manabe, and T. Okamoto, “Efficient secure
auction protocols based on the Boneh-Goh-Nissim encryption”.
In Proceedings of the 5th international conference on Advances
in information and computer security, Springer-Verlag, Novem-
ber:2010, pp. 149-163.

[20] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical
privacy for genomic computation,” in Proc. 29th IEEE Symp.
on Secur. Privacy, May 2008. pp. 216-230.

[21] J. H. Cheon, M. Kim, and K. Lauter, “Homomorphic
computation of edit distance,” in proceeding of Financial
Cryptography and Data Security. Berlin Heidelberg: Springer,
2015, pp. 194-212.

[22] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser,
“Machine learning classification over encrypted data,”
Cryptology ePrint Archive, Report 2014/331, 2014,
http://eprint.iacr.org/2014/331.

[23] Y. Lindell and B. Pinkas, “Secure multiparty computation
for privacy-preserving data mining,” Journal of Privacy and
Confidentiality, vol. 1 no. 1, pp. 59-98, Pennsylvania, 2009.

[24] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homo-
morphic encryption be practical?,” in Proceedings of ACM
Cloud Computing Security Workshop (CCSW), ACM Press,
2011, pp. 113-124.

[25] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T.
Koshiba, “Privacy-preserving wildcards pattern matching using
symmetric somewhat homomorphic encryption,” in W. Susilo
and Y. Mu (Eds.): ACISP 2014, LNCS, Springer, 2014, vol.
5844, pp. 338-353.

[26] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T.
Koshiba, “Secure pattern matching using somewhat homomor-
phic encryption”, in Proceedings of ACM workshop on Cloud
Computing Security Workshop. ACM Press, 2013, pp. 65-76.

[27] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T.
Koshiba, “Practical packing method in somewhat homomor-
phic encryption,” in DPM/SETOP, ser. LNCS, Springer, 2013,
vol. 8147, pp. 34-50.

[28] W. Castryck, I. Iliashenko, and F. Vercauteren, ‘“Provably
weak instances of ring-LWE revisited,” in Annual International
Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2016, pp. 147-167.

[29] E. Barker, “Recommendation for key management,” NIST
Special Publication 800-57 Part 1 Rev. 4, NIST, 2016.

[30] The PARI~Group, PARI/GP version 2.7.5, Bordeaux,
2014, http://pari.math.u-bordeaux.fr/

