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Abstract – In this review paper, we present reasons the 
current best cryptographic algorithms will fail classical 
computer security in post-quantum era. The presented 
security gaps outline the need to develop quantum-resistant 
cryptographic functions and algorithm for classical 
computers, with a few novel recommendations to the effect. 
Therefore, we believe this paper will enlighten and generate 
interest in post-quantum cryptography research.  
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I. INTRODUCTION 

We live in a connected world and rely heavily on 
secure internet services for email, social networking, web 
search, cloud computing, e-commerce, and bill payment, 
amongst hundreds others [1]. For example, the https 
protocol uses 128-bit encryption at Secure Socket Layer 
(SSL) to protect web traffic for banking, e-commerce, 
email, amongst other services. A look at 
http://map.norsecorp.com/#/ website (Fig.1) shows the 
extent of cyber-attacks on a global scale [2]. As can be 
seen in this live attack map, the 65535 ports that support 
various computing services such as email, https amongst 
hundreds others are under constant cyber-attack.  

 

 

Figure 1. Norse Live-Attack Map 
 

Much of the increased attacks can be attributed to the 
fact that computers have become increasingly powerful in 
terms of speed and capability. Table 1 compares some 
types of computers and their processors that are currently 
making headlines all over the world. While classical 
computers perform as many computations at the same time 
as there are cores in its processor, quantum computers 
perform as many computations exponentially as there are 

quantum bits (qubits) in its processor. Quantum effects 
such as superposition of bits 0 or 1; parallelism [3], 
entanglement [4], [5], and quantum annealing give D-
Wave X2 quantum computer this enormous capability. For 
example, D-Wave X2 quantum computer has a single 
processor, but has 1000 qubits that can perform 21000 
calculations simultaneously [6]. In comparison, the fastest 
supercomputer “Sunway TaihuLight”, has 10,649,600 
processor cores capable of performing only as many 
computations at the same time [7].   

TABLE 1.  COMPUTER/PROCESSOR SPEEDS 

Systems Processor Core Frequency 
Samsung 
Galaxy S7 
smartphone 

8 Core Snapdragon 820, Exynos 
8890, 64-bit chipset 

2.3+ GHz [8] 

Desktop PC Intel Core i7-7Y75 (7th Gen. 
Processor)  

3.6 GHz [9] 

Sunway 
TaihuLight 
Supercomputer 

10,649,600 cores, 1.45GHz 93,014 TFlop/s [7] 

D-Wave X2 
Quantum 
Computer 

1 x 1000 qubit CPU 21000 simultaneous 
computations [6] 

 
D-Wave’s performance advantage suggest future 

quantum computers will be even more powerful and solve 
many of the physical world’s currently difficult quantum 
mechanical challenges in the areas of artificial 
intelligence, machine learning, image recognition, 
materials modeling, drug discovery, and search and 
optimization faster and better than today’s fastest 
supercomputers.  

However, the same capability of quantum computers 
will open up the Pandora’s Box in the face of classical 
computer cryptography. Cryptography is by far the best 
technique implemented to protect information for 
confidentiality and integrity in classical computers.   
Modern cryptography makes use of mathematical theory 
and computer science practice when designing 
computational algorithms. Any chosen algorithm should 
be computationally secure, meaning computationally 
difficult to break in practice by any attacker. Many 
cryptographic protocols are based on the difficulty of 
factoring large composite integers, prime numbers, or a 
related problem. With the presence of quantum computers 
such as D-Wave and personal quantum computers (PQCs) 
in the attack vector in the near future, there is threat that 
our current cryptographic defenses will not be able to 
provide adequate security. 

Accordingly, this review paper intends to discuss the 
gaps that exist in hash, encryption, digital signature, and 
key exchange algorithms for post-quantum use in classical 
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computers and make recommendations for improvements 
as per NIST’s Post-Quantum Crypto Project [10]. 

In the following Sections, Section II explains 
foundation of current cryptographic algorithms. Section III 
addresses the security gaps that open up in classical 
computers due to emergence quantum computers. Section 
IV sketches some recommendations as solutions and 
finally Conclusions in Section V. 

II. CLASSICAL COMPUTING CRYPTOGRAPHIC ALGORITHMS  

Currently, the best way to ensure security in all digital 
infrastructure such as network hardware, communication 
protocols, and software is by implementing cryptographic 
functionalities such as encryption, hash functions, digital 
signature, and key exchange [10],[11]. This Section 
discusses three classes of cryptographic algorithms – 
namely, hash functions, symmetric-key algorithms and 
asymmetric-key algorithms, and the mathematical basis 
for their acceptance. 

A. Mathematical Basis 
The strength of all cryptographic algorithms is based 

on difficult mathematical problems that generate codes 
which unauthorized people will not be able to easily break. 
Today, in classical computers, the mathematical theory of 
Integer factorization is used to strengthen public-key 
cryptography systems because it is computationally 
difficult to factorize large integer in classical computers, 
particularly if the integer is a product of two 300-digit 
(2400-bit) prime numbers.  

B. Cryptographic Hash Function 
Cryptographic hash function uses a mathematical 

algorithm that converts a message (input) of any length to 
a hash value (digest) string of fixed bit-size in a one-way 
operation (Fig.2) that is impossible to reverse [12], [13]. It 
is used in information security applications such as digital 
signatures, message authentication codes (MACs), data 
indexing in hash table, in fingerprinting, and as checksums 
[13].  

 

 
Figure 2. Use of Cryptographic hash function [13] 

 

A perfect cryptographic hash function has four 
characteristics. One, it should be quick in calculating the 
digest from the input. Two, the digest cannot be used to 
get back the original input.  The only way to get the input 
is by attempting a brute-force search of possible inputs to 
derive a match. Three, any change in input changes the 
message so severely that the new digest will be in no way 
correlated to the old. Fourth, it is impossible to find two 
different inputs derive the same digest [13]. 

A cryptographic hash function should resist all known 
cryptanalytic attacks such as pre-image attack, second-pre-
image attack, and collision attack.  

Pre-image resistant hash function is one where for a 
computed digest h it is difficult to find any input (m) such 
that h=hash(m). If it is not difficult, then hash function is 
vulnerable to pre-image attack [13].   

Second pre-image resistant hash function is one that 
when given an input m1, it is difficult to find different 
input m2 such that hash(m1)=hash(m2). If it is not difficult, 
then hash function is vulnerable to second pre-image 
attack [13]. 

Collision resistant hash function is one where it is 
difficult to find two different inputs m1 and m2 such that 
hash(m1)=hash(m2). For collision resistance, hash value 
should be twice as long as those required in second-pre-
image resistance attacks. If it is not long enough, birthday 
attacks will find collisions [13], [14].  

Secure hash algorithms (SHAs) are specified in 
FIPS180-4 [14] and FIPS202 [15] as recommended hash 
functions. Table 2 shows the security strength of SHA-1, 
SHA-2, and SHA-3 functions in classical computing [14], 
[15].  

TABLE 2.  SECURITY STRENGTHS OF SHA-1, SHA-2, AND SHA-3 
FUNCTIONS [15] 

 

For a message that is less than 264-bits, SHA-1, SHA-
224 and SHA- 256 hash algorithm is applied. For a 
message less than 2128-bits, SHA-384, SHA512, SHA-
512/224 and SHA-512/256 hash algorithm is applied. 
SHA-3, the most recent hash algorithm was released by 
NIST in 2015 as FIPS202 [14], [15]. SHA-3 is a family of 
four cryptographic hash functions (SHA3-224, SHA3-256, 
SHA3-384, and SHA3-512) and two extendable-output 
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functions (XOFs), namely SHAKE128 and SHAKE 256 
[15].  

These SHAs are also built-in as part of many other 
cryptographic algorithms such as digital signature 
algorithms as detailed in FIPS186-4 [16], keyed-hash 
message authentication codes (HMAC) as detailed in 
FIPS198-1 [17], and in the generation of random number 
bits [14].   

Some popular cryptographic hash functions such as 
HMAC are susceptible to length-extension attacks.   If 
given hash(m) and len(m) but not m, an attacker can chose 
an appropriate m’ to concatenate and calculate hash(m||m’) 
[13]. 

C. Symmetric-Key Algorithms versus Asymmetric Key 
Algorithms 
Symmetric-Key algorithms are also known as secret-

key algorithms as they use the same key for both 
encryption and decryption purposes (Fig.3).  

 

 
Figure 3. Symmetric key encryption [18] 

 
Here, Alice can encrypt and send a message to Bob to 

decrypt Bob can encrypts and send a message for Alice to 
decrypt, using the same shared key. Symmetric key 
algorithms provide four functionalities. One, they can 
provide data confidentiality (privacy). Two, it can generate 
and validate a message authentication code (MAC). Three, 
it is used key-establishment process. Four, it can generate 
deterministic random numbers [12]. Currently, the 
strongest and recommended Symmetric key algorithm for 
encryption and decryption purposes is Advanced 
Encryption Standard (AES) [12]. 

Asymmetric-key algorithms, also known as public-
key algorithms, use a pair of keys – private-key and 
public-key, for encryption and decryption purposes (Fig. 
4).  Procedures include [19]:  

(a) Deciphering enciphered message M yields M, as 
D(E(M) = M. 

(b) It is easy to compute both D and E. 
(c) Even by publically revealing E, public cannot 

find any easy way to compute D efficiently. 
(d) If the message M is first deciphered and then 

enciphered, M is the result, as 
E(D(M) = M. 

In Fig. 4, for Alice to receive an encrypted message 
from Bob that she can understand, Alice has to give her 
public-key – EA to Bob. Bob will encrypt the plain text 

message using Alice’s public key – EA(M) and send to 
Alice.  Alice will have to decrypt the message using her 
private-key – DA(EA(M)) to get the plain text message – M.  
Asymmetric-key algorithms can be used to compute 
digital signatures, and to establish cryptographic keys [12]. 

 
Figure 4. Asymmetric key encryption [18] 

 

D. Advanced Encryption Standard (AES) 
FIPS-197 discusses AES algorithm in detail [20]. In 

brief, AES uses sequences of 128 bits for input and output. 
Block length = 128 bits, 0 ≤ n ≤ 16. Its cipher key contains 
128, 192 or the strongest 256-bit sequence [20]. AES-256 
makes 14 repetitions of transformation rounds in the 
matrix that convert plaintext (input) into cipher text 
(output), and vise-versa which are detailed by FIPS-197 
[20] and ISO/IEC 18033-3 [21].  

Further, AES performs polynomial calculations on 
input bytes that are represented as finite field elements as 
[20]: 

  

 
 

E. Digital Signatures 
A digital signature detects unauthorized modifications 

to data (integrity), authenticates identity of the signatory, 
and proves to a third-party that signature was generated the 
claimed signatory (non-repudiation) [16], [19]. Rivest et.al 
explains use of digital signature in the following example 
[19]. 

For Bob to send Alice a signed message M in a 
public-key cryptosystem, he first has to compute his 
signature S for the message M using DB, such that: 

                               S = DB(M).   

Bob then encrypts S using EA (for privacy), and sends 
the result EA(S) to Alice. He does not need to send M 
because can be computed from S. 

Alice has to first decrypt the cipher-text with DA to 
obtain S. She presumes the sender is Bob, so she extracts 
the message with the encryption procedure of the sender, 
in this case EB such that:  

                               M = EB(S)    
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Alice now possesses a message-signature pair (M, S) 
that has properties similar to those of a signed paper 
document. Hence, Bob cannot deny having sent Alice this 
message, because Alice could not have created S= DB(M).  

So, Alice can convince a judge that EB(S) = M, as she 
has proof that Bob signed the document.  

Also, Alice cannot modify M to a different version 
M’, as to do that she will also have to create the 
corresponding signature S’ = DB(M’).  

Therefore, Alice has received a message signed by 
Bob, which she can prove that Bob has sent, but which she 
cannot modify [19].  

FP186-4 details algorithms and methods for 
generating, verifying, and validating digital signature. 
FIPS186-4 approved the use of three algorithms for digital 
signature generation, verification, and validation purposes 
– Digital Signature Algorithm (DSA), Rivest-Shamir-
Adleman (RSA), and The Elliptic Curve Digital Signature 
Algorithm (ECDSA) [16].  Fig. 5 shows that digital 
signature algorithms also rely on built in hash algorithms 
to determine data lengths for digital signature computation 
[12].  

 

 
Figure 5. Hash use in Digital Signature Process [16] 

F. Digital Signature Algorithm (DSA) 
DSA technical specifications such as criteria for the 

generation of domain parameters, for the generation of 
public and private key pairs, and for the generation and 
verification of digital signatures are detailed in FIPS186-4 
[16]. DSA key sizes mentioned are 1024, 2048, and 3072 
bits while the output digital signatures are of 320, 448, or 
512 bits [12]. 

G. Rivest-Shamir-Adleman (RSA) 
Authors Rivest, Shamir, and Adleman detail the RSA 

algorithm in their 1978 paper, “A Method for Obtaining 
Digital Signatures and Public-Key Cryptosystems” [19].  

RSA encryption (E) and decryption (D) algorithms are 
mathematically as [19]: 

C ≡ E(M) ≡ Me (mod n), for a message M. 
D(C) ≡ Cd (mod n), for a ciphertext C. 

RSA encryption key is a pair of positive integers (e, 
n), and decryption key is a pair of positive integers (d, n) 
[19].  The first step is to compute n as the product of two 
very large random prime numbers p, and q, such that: 

n = p · q. 

Although n will be made public, the factors p and q 
can be unknown to public due to the great difficulty in 
factoring n. Hence, this also hides the way d can be 
derived from e [12], [19], [22]. 

In the second step, d, a large random prime number 
that is relative to (p – 1) · (q – 1), or greater than max(p,q) 
is picked that satisfies [19]: 

gcd(d, (p – 1) · (q – 1)) = 1 
(gcd means greatest common divisor). It is important that 
d is substantially large so that a cryptanalyst cannot find it 
easily by direct search [19]. 

Finally, the integer e is computed from p, q, and d as 
the multiplicative inverse of d, modulo (p – 1) · (q – 1), 
such that [19]:  

e · d ≡ 1 (mod (p – 1) ·  (q – 1)). 

Computing Me (mod n) requires at most 2·log2 (e) 
multiplications and 2· log2(e) divisions using a procedure 
called “exponentiation by repeated squaring and 
multiplication” [19]. 

Basically, RSA initially required each user to 
privately choose two very large (100-digit) random 
numbers p and q, so that upon computation n yields at 
least a 200-digit integer. It would be better, if the two 
numbers selected are not close to each other. So, the 
numbers should be so large that it is not computationally 
practical for anyone to factor n = p · q, to crack the key 
[19]. Rivest et.al knew from the beginning that factoring n 
would enable attackers to break RSA. They knew 
Pollard’s algorithm could factor a number n in O(n1/4) 
time, and an algorithm by Schroeppel could factor n in 
even faster time [19]. 

RSA was adopted by NIST as ANS.X9.31 and later as 
PKCS#1. Both of these standards approved in FIPS186-4, 
subject to some additional requirements [16]. FIPS-186-4 
specifies methods for generating RSA key pairs for several 
key sizes for ANSX9.31 and PKCS#1 implementations. 
RSA cipher uses only one round of operation and 1024 
bits to 4096 bits key sizes [16].  

H. Elliptic Curve Digital Signature Algorithm (ECDSA) 
ECDSA is detailed in ANS X9.62, and is approved by 
FIPS186-4 with some additional requirements [16]. 
ECDSA produces digital signatures that are twice the 
length of the 160 bits key size [16]. 

I. Key Establishment, Agreement and Establishment 
Schemes 

Key-establishment schemes are used to set up keys to be 
used between communicating parties. There are two types 
of key-establishment schemes - key transport and key 
agreement. Best key establishment schemes that use 
public-key algorithms are adopted in SP800-56 [23] from 
ANSX9.42 and ANSX9.63. ANSX9.42 details key 
agreement schemes and ANSX9.63 details both key 
agreement and key transport schemes [12].  

Discrete Log Key agreement schemes use Finite-Field 
calculations. SP800-56 recommends eight key agreement 
schemes that are based on the complexity of the discrete 
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logarithm problem and that use finite-field arithmetic for 
use [23]. Each scheme uses key pairs depending as per 
communication requirements [12], [18].  

Discrete Log Key agreement schemes use Elliptic-
Curve calculations.  SP800-56 recommends seven key 
agreement schemes based on the complexity of the 
discrete logarithm problem and that use elliptic-curve 
arithmetic for use  [18], [23]. Each scheme uses key pairs 
depending as per communication requirements [12]. Key 
establishment protocols also use key establishment 
schemes to specify the steps to establish a key. They also 
specify message flow and format. Thus, key establishment 
protocols must be carefully designed to prevent leak of 
secret information to a threat agent [18].  If given enough 
time and computer power to perform certain computations 
on the value of the secret or private key in use, then an 
attacker may be able to deduce the key from observed 
fluctuations using cryptanalysis techniques [12], [18]. 

Table 3 summarizes the current estimates for the 
maximum security strengths that the recommended 
symmetric and asymmetric cryptographic algorithms 
provide, with keys of a specific length [12]. Column 1 
shows estimated maximum security strengths (in bits).  
Column 2 shows the symmetric-key algorithms that 
provide the security strength indicated in column 1 [12]. 
Column 3 shows the minimum size of the parameters 
associated with the standards that use finite-field 
cryptography (FFC). DSA is defined in FIPS186 for 
digital signatures and Diffie-Hellman (DH) is defined in 
SP800-56A [24]. L is the size of the public key and N is 
the size of the private key [12]. Column 4 indicates the 
value for k (the size of the modulus n) for algorithms 
based on integer-factorization cryptography (IFC). The 
predominant algorithm of this type is the RSA algorithm. 
RSA detailed in [FIPS186] for digital signatures, and in 
[SP800-56B] for key establishment. The value of k is the 
key size [12]. Column 5 shows the range of f (the size of n, 
where n is the order of the base point G) for algorithms 
based on elliptic-curve cryptography (ECC).  ECC is 
specified for digital signatures in ANSX9.62 and adopted 
in FIPS186. For key establishment it is detailed in SP800-
56A. The value of f is the key size [12].  The 192-bit and 
256-bit key strengths identified for the FFC and IFC 
algorithms (in red) are not recommended because of 
interoperability and efficiency problems [12]. 

TABLE 3.  COMPARABLE SECURITY STRENGTH OF BEST SYMMETRIC 
KEY AND ASYMMETRIC KEY ALGORITHMS [12] 

Security 
Strength 

Symmetric 
key 

algorithms 

FFC 
(DSA, D-H) 

IFC 
(RSA) 

ECC 
(ECDSA) 

128 AES-128 L = 3072 
N = 256 

k = 3072 f = 256-383 

192 AES-192 L = 7680 
N = 384 

k = 7680 f = 384-511 

256 AES-256 L = 15360 
N = 512 

k = 15360 f = 512+ 

 

III. SECURITY GAPS DUE TO QUANTUM COMPUTING 

 Post quantum cryptography concerns are not new, as 
Diffie and Hellman pointed these out in their paper – 
“New Directions in Cryptography” in 1976 [25]. Peter 
Shor’s paper in 1999 titled “Polynomial-time Algorithms 
for Prime Factorization and Discrete Logarithms on a 
Quantum Computer”, proved that Feynman’s predicted 
quantum computer [3], [4], [5] was not very far [26], [27]. 
In his paper, he showed how randomized algorithms, 
factoring of integers and finding discrete logarithms, that 
were considered difficult for classical computers, the basis 
on which they were selected as cryptosystems, are easily 
broken in polynomial-time using a hypothetical quantum 
computer [27].   Hence, our current cryptosystems need a 
re-look to discover better algorithms for security in order 
to protect against cyber-attacks in the quantum computer 
era.  

Supporting the aforementioned mentioned 
foundations is PQCrypto [28], an organization formed in 
early 2000’s by Deneiel J. Bernstein and Tanga Lange, 
have been encouraging post-quantum cryptography 
research and publications. Their website “Post quantum 
cryptography” contains numerous latest research 
publications on the issue, and they still believe that more 
research is required on the issue [28]. 

According to the NISTIR 8105 report, a “Report on 
Post-Quantum Cryptography”, current best and 
recommended cryptography algorithms Advanced 
Encryption Standard 256 (AES-256), Secure Hash 
Algorithm 3 (SHA-256), Secure Hash Algorithm 256 
(SHA-256), Rivest Shamir Adleman (RSA), Elliptic Curve 
Digital Signature Algorithm (ECDSA), Elliptic-Curve 
Diffie–Hellman (ECDH), and Digital Signature Algorithm 
(DSA) which uses Finite Field Cryptography will not be 
secure for digital communications in post-quantum 
computing era [11].  

This is because quantum computer by their quantum 
mechanical nature can proficiently solve these algorithms 
and any other BQP (bounded error, quantum, and 
polynomial time) problems (Fig.4) [29].   

 

 

Figure 4. Problem Theory [29] 
 
For some problems, quantum computers offer a 

polynomial speedup. Quantum computers will be able to 
solve BQP problems such as factorization and discrete 
logarithms operations in super-polynomial speed using 
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Shor’s algorithm. Such an achievement is impossible in 
classical computers [30].  

Integer factorization means the breakdown of a 
composite number into a product of smaller integers. If the 
final integers are restricted to prime numbers, the process 
is called prime factorization. So in integer factorization 
algorithm, given an n-bit integer, computer has to find the 
prime factorization. There are no efficient classical integer 
factorization algorithms.  The general number field sieve 

which solves in a time  is the fastest known 
classical algorithm for integer factorization.  The best 
upper bound on the classical complexity of factoring is 

 [31].  
In quantum computer, integer factorization is 

performed in super-polynomial speed.  Peter Shor’s 

quantum algorithm achieves this in time [27].  
Shor's factoring algorithm breaks RSA public-key 
encryption, while its related quantum algorithms for 
discrete logarithms break the DSA and ECDSA digital 
signature schemes, and the Diffie-Hellman key-exchange 
protocol. There also exists a quantum algorithm which is 
faster than Shor's for factoring “semi primes [32]. In the 
heart of Shor's factoring algorithm is order finding, which 
can be reduced to the Abelian hidden subgroup problem, 
and solved using the quantum Fourier transform [30].  
Many cryptographic protocols are based on the difficulty 
of factoring large composite integers or a related 
problem—for example, the RSA problem.   

Likewise, in Discrete-log algorithm, when given three 
n-bit numbers a, b, and N, where b = as mod N for some s, 
finds s. Following Shor, this can be achieved on a quantum 
computer in poly(n) time [27]. The fastest known classical 
algorithm requires time super-polynomial in n. By similar 
techniques to those in [27], quantum computers can solve 
the discrete logarithm problem on elliptic curves, thereby 
breaking elliptic curve cryptography [33]. The super-
polynomial quantum speedup has also been extended to 
the discrete logarithm problem on semi-groups  [30], [34].  

Likewise, Grover's algorithm in quantum computer 
can be applied to break a AES symmetric key algorithm by 
brute force in a time of about 2n/2 invocations of its 
underlying bits, compared with roughly 2n in the classical 
computers [35]. So, symmetric key lengths are in effect 
halved, giving AES-256 the same level of security against 
an attack using Grover's algorithm that AES-128 has 
against brute-force search in classical computers. As of 
2013, cryptanalysis attacks such as biclique attack and 
related-key attack that are computationally faster than 
brute force attack have been published for AES, but none 
tested computationally feasible [20], [21]. Grover’s 
algorithm can also be used to obtain a quadratic speed-up 
over a brute-force search for NP-complete class of 
problems. 

Current strong asymmetric / public-key cryptographic 
systems include RSA (Rivest-Shamir-Adleman) algorithm, 
elliptic curve algorithms such as ECDSA (EC-Digital 
Signature Algorithm) and ECDH (EC-Diffie-Hellman), 

and Finite Field algorithm such as DSA. They use either 
integer factorization or discrete log problem as their 
mathematical base [11] for digital signature and key 
exchange purposes, and hence also insecure for use in 
quantum era. 

RSA is also based on the factoring problem – 
factoring the product of two large prime numbers [19], 
[22]. Cryptanalysis technique such general number field 
sieves for classical computers and Shor’s algorithm for 
quantum computers leaves RSA-based public-key 
cryptography in a sorry state of security.  As it is, a 768-bit 
RSA key has already been broken using cryptanalysis in 
classical computers [12], [22].  

Elliptic Curve Digital Signature Algorithm (ECDSA) 
offers a variant of the Digital Signature Algorithm (DSA) 
which uses elliptic curve cryptography. As with elliptic-
curve cryptography in general, the bit size of the public 
key believed to be needed for ECDSA is about twice the 
size of the security level, in bits. For example, at a security 
level of 80 bits (meaning an attacker requires the 
equivalent of about 280 operations to find the private key) 
the size of an ECDSA public key would be 160 bits, 
whereas the size of a DSA public key is at least 1024 bits. 
On the other hand, the signature size is the same for both 
DSA and ECDSA: 4t bits, where t is the security level 
measured in bits, that is, about 320 bits for a security level 
of 80 bits [12],[36].  

Elliptic Curve Diffie–Hellman (ECDH) is an 
anonymous key agreement protocol that allows two 
parties, each having an elliptic curve public–private key 
pair, to establish a shared secret over an insecure channel. 
This shared secret may be directly used as a key, or to 
derive another key which can then be used to encrypt 
subsequent communications using a symmetric key cipher. 
It is a variant of the Diffie-Hellman protocol using elliptic 
curve cryptography [12], [37]. 

Table 4 shows a summary of common cryptographic 
algorithms that are under threat by quantum computers, 
because of their ability to solve BQP problems 
proficiently.  This ability empowers quantum computers to 
decrypt many of the cryptographic systems in use today. 

TABLE 4.  COMMON CRYPTOGRAPHIC ALGORITHMS UNDER THREAT [11] 

Cryptographic 
Purpose 

Cryptographic 
Algorithm  

Type Impact from 
Quantum 
Computer 

Encryption AES-128 Symmetric  
Key 

Larger key sizes 
needed 

Hash Function SHA-256,  
SHA-3 

 Larger output 
needed 

Signatures,  
Key establishment 

RSA Public key No longer secure 

Signatures,  
Key exchange 

ECDSA, ECDH  
(Elliptic Curve 
Cryptography) 

Public key No longer secure 

Signatures,  
Key exchange 

DSA  
(Finite Field 
Cryptography) 

Public key No longer secure 
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D-Wave X2 is quantum computer is now operational 
and Personal Quantum Computers (PQCs) may be 
developed any-time soon for commercial sale. To prevent 
hackers from having a field day compromising systems at 
unthinkable scale in the future, better cryptographic 
defenses have to be designed for post-quantum use. 
National Institute of Standards and Technology (NIST) 
has already begun the Post-Quantum Crypto Project in 
which it plans to standardize post-quantum cryptography 
[10]. So far, NIST has released a draft call-for-proposal 
document outlining submission requirements and 
evaluation criteria for post-quantum public key 
cryptography standards [38]. Soon it will begin accepting 
proposals from researchers for quantum-resistant public 
key encryption, digital signature, and key exchange 
algorithms.  The deadline for submission is November 
2017 [39], after which all proposals will undergo intense 
public scrutiny. Finally, NIST will select at least one 
algorithm for standardization [10].  
 

IV. RECOMMENDATIONS 

The following solutions will ensure development of 
quantum resistant cryptography for use in classical 
computers that can help prevent attacks by quantum 
computers and related technologies.  
1. Use current unsolved-problems in mathematics as the 

mathematical base for the cryptographic algorithm. The 
chosen problem should be difficult enough even for a 
quantum computer to solve. Current unsolved problems 
in mathematics are listed in 
https://en.wikipedia.org/wiki/List_of_unsolved_proble
ms_in_mathematics. The list includes Hilbert’s 
problems, Landau’s problems, Taniyama’s problems, 
Thurston’s problems, Smale’s problems, Millennium 
prize problems (P vs NP, Hodge conjecture, Riemann 
hypothesis, Yang-Mills existence and mass gaps, 
Navier-Stokes existence an smoothness, Birch and 
Swinnerton-Dyer conjecture), and other unsolved 
problems in – algebra,  algebraic geometry, analysis, 
combinatorics, discrete geometry, Euclidean geometry, 
dynamical systems, graph theory, model theory, and 
number theory [40]. 

2. Any algorithm that has been broken in classical 
computers so far has to be made obsolete for use in 
post-quantum era.  If for example, AES-128 has been 
broken in classical computing attack then there is no 
use strengthening it with larger key size of 1024, as 
quantum computing attack will be able to defeat it 
anyway. 

3. The chosen algorithms should not use finite field, 
integer factorization, or discrete log problem as their 
mathematical base as they can be efficiently solved 
using quantum computing capabilities.  

4. If the keys are used, they should be substantially large 
integers (more than 300-digit) prime numbers. 

5. Develop cryptographic algorithms that cannot be 
broken by Shor’s and Gover’s algorithms on quantum 
computers.  

6. Develop cryptographic algorithms that cannot be 
broken by any of the powerful algorithms patented by 
D-Wave in the development of D-Wave X2 computer.  

7. McEliece and Lattice-based cryptosystems that are also 
currently not known to be broken by quantum 
computers can be also used for now. 

8. In the future, pure quantum cryptography that use 
quantum physics characteristics such as photons and 
electrons can be designed for quantum computer use 
only.  

V. CONCLUSIONS 

There is no doubt that we live in a time when top-
most Cybersecurity implementations are vital in 
technologies we use for our daily communications service 
needs. The rise of quantum computing technologies such 
as D-Wave quantum computer will pose security threat to 
the current cryptographic defenses.  Hence, there is a vital 
need to develop better cryptographic systems that can 
provide post-quantum protection in classical computers, 
and can interoperate with conventional networks and 
protocols. The recommendations provided as solutions can 
be used to devise better cryptographic algorithms for 
future use. 
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