
Comparative analysis of Software Architecture
Documentation and Architecture Languages

Mateen Ahmed Abbasi

UIIT-PMAS
Rawalpindi, Pakistan

mateenabbasi@msn.com

Dur –e-Benish Batool
UIIT-PMAS

Rawalpindi, Pakistan
benimalik@rocketmail.com

Rahil Butt
UIIT-PMAS

Rawalpindi, Pakistan
rahilbutt82@hotmail.com

Tanveer Mehmood
Anjum

UIIT-PMAS
tanveer2382@gmail.com

Abstract:

Research on software Architecture is vigorous from
the early 90’s and its lead to a number of different
architecture description languages (ADLs). These
languages are increasing in a huge amount and are
different in term of analysis produced by these
languages and abstraction supported by them.
Moreover, a lot of other languages not intended as
ADL serve reasonably fine on analyzing and
representing software architecture like Unified
Modeling Language 2.0. UML accomplish
approximately all necessities of Architecture
Description Language. This research work focuses
on comparative analysis of Architecture description
languages and software architecture documentation
on the bases of usability, connector support, formal
semantics, behavioral specification, Language
quality, views and dynamic architecture support.
Key words:
ADLs, Software Architecture, SAD, UML

I INTRODUCTION

The concept that software architecture is a
subdivision of software engineering in near-about
twenty years old. In the last twenty years many
software description languages came into view and
gone, excluding only a few architecture description
languages no architecture language is admired by the
professionals but software architecture
documentation which uses UML which even not
acknowledged as Architecture description language
or considered with vacillation is became a regular
notation in the industry for documenting software
architecture.
The software architecture system explains standard
structure of interrelate component of software
architecture. For describing the interrelationship
linking the different components the architects uses
informal boxes and arrow diagrams. Many different
Architecture Description languages were build up in
the starting phase of research on the software
architecture, with the help of developers who perform

experiments on structures needed to support relations
and architecture description.
ADLs formally represent the system’s architecture. In
the last twenty years it is has been seen that the
appearance of many Architecture Description
Languages is proposed by researchers in academics
and software industry. [1][2] [3]. To analyze and
represent architectural design the architectural
description languages provide details. [4][5][6]. these
type of software details provide mutually conceptual
frameworks and tangible syntax for describe
architecture of the system. A few newly well-known
Architecture description languages are Wright,
Unicon, Adage, Drawin, C2, Aesop, Mata-H and
Rapide. This type of Architectural Description
Languages apprehensive with architecture’s design
and provide distinct properties. SAD serves for
several intentions. Software architecture
documentation can be effortlessly and rapidly
understandable by new-fangled developers. SAD acts
as a prototype for creation of architecture and has
sufficient information that SAD be able to serve for
analysis. SAD represents the architecture in a three
dimensional way and is descriptive. This research
focuses on recently most popular Architecture
Description languages like Unicon, Wright and the
most new one Architecture Description language
Software Architecture Documentation (SAD) and
Architecture Analysis and Design Language
(AADL). Many surveys were conducted for
Architecture Description Languages [7] [8] but they
haven’t mention SAD in any survey that SAD also
provide descriptive analysis in the type of
documentation. In this research evaluated these
architectural languages and Software Architecture
Documentation against a number of important
parameters: (i) Formal Semantics (ii) Dynamic
Architecture Support (iii Language Definition
Quality (iv) High level Connector (v) Formally
Analyzable (vi) capturing design views (text ,
graphic, both) (vii) High level components.

2016 3rd Asia-Pacific World Congress on Computer Science and Engineering

978-1-5090-5753-5/16 $31.00 © 2016 IEEE

DOI 10.1109/APWC.on.CSE.2016.39

199

II. COMPARISON OF LANGUAGES

Before doing anything we will discussed the
Architecture Description Languages (Unicon,
Wright, Architecture Analysis and Design Language)
and then Software Architecture Documentation on
the given constraints

• Component and Connector Support
• Semantics
• Dynamic Architecture Support
• Behavior Specification
• Language Quality Definition
a) Wright

The Architecture Description Language Wright is
renowned for its unambiguous and formal behavior
of connectors in architecture design. [1]
Component and Connector support:
The Architectural language Wright’s focal point is on
the formal analysis of components which are based
on connectors and embrace supports for detaining
software architecture features. Connectors in Wright
are started with the instance of the connectors which
allowed reprocess of the similar interaction pattern on
dissimilar frameworks and moreover the study of
connectors in seclusion. The Type of the Connectors
is defined by the role which represents the
participating components and a fixative which
coordinates with the behavior of the role. [8]
Semantics:
The Components of Semantics are describing by
writing and designing the ports CSP process by the
specification process which synchronizes the ports.
[8] The structural language wright’s semantics are
also described in CSP.
Dynamic Architecture support
Almost all the Architecture Description Languages
are unambiguous in nature. Wright provides
incredibly modest support towards dynamic
architecture. [9]
Behavior Specification:
In communicating sequential process the behavior
specification in Wright is done. The behavior
specification of component forms is controlled in two
fractions: Specification process and port process,
where the specification corresponds to the internal
behavior for multifaceted, complex types and ports
represent their outer behavior of the components. [8]
Language Quality Definition
Wright provides the reliable and comprehensive
architecture specification and it provides the high
level of language quality. [9]

b) UNICON
Unicon is one more premature Architecture
Description Language which permits the designers to
identify the connectors and components. Unicon
supports evolution of system design to implement the
code flatter and real life applications.
Component and Connector support:

The software architecture illustrated in Unicon
consists of a quantity of connectors and components.
The Components represents 868 data or
computational units of the system. The units of data
of a system are characterized by components and the
connectors in unicon act as negotiator in the
communication between unicon’s components.
Every component is linked with an implimentaion
and an interface. The connectors in the unicon
intercede the communication among components.
[10] But not as Wright, unicon limits protocols to be
definite types for example Data access, Procedure
Call, Pipe, thus avoiding designers from freely
specifying their types.[8]
Semantics:
Unicon’s focus is on early generation of code from
architecture specification and it doesn’t formally
describe semantics. Unicon present a set of tools for
mapping architecture in C source code. Whereas it
permits system replication, and it’s challenging for
formal verification. [8]
Dynamic Architecture support:
Unicon can handle the dynamic arc hitecture because
it is specific in nature [9].
Language Quality Definition:
Unicon provides dreadfully modest support to
constancy of architecture specification and doesn’t
give complete architecture specification because it
does not support formal semantics.[9]
Behavior specification:
Unicon doesn’t permits formal behavioral
specification of architectural components where as
Wright, Unicon and Darwin allows it. However,
UniCon recommends a set of integral attributes for
connector and components templates and as well
players/roles.[8]

c) Architecture Analysis and Design Language
(AADL)

Architecture Analysis and design language is an
Architecture Description Language that intended to
support hardware, software and mixed system
architecture. [11] [12] AADL has the highest amount
of users among other architecture languages because
of its specialization. To design and analyze the
software and hardware architecture of real time
system AADL use graphics and text. AADL illustrate
the important features, performance and functional
interface of components. [11] [12]
Component and Connector support:
Unlike the above mentioned architecture description
languages AADL has low level built-in component
support. Architecture Analysis and design language
provides no support for connectors. Components
interrelates using ports or by suing subprogram-calls
and the connections are limited to the subsequent
mechanisms: parameter connections, component
access connections, port, subprogram calls and
connections. But there is no support in favor of

200

specifying innovative connector types that can
characterize complex interaction protocols. [8][10]
[12]
Semantics:
The semantics of Architecture Analysis and design
language are described in natural language because it
is not formerly developed with the specific semantic.
But many attempts were made in this sense
afterward. [8] [10]
Dynamic Architecture support:
Architecture Analysis and design language doesn’t
fully support the dynamic architecture but at
someplace it supports dynamic architecture and
variability. [8][10][12]
Language Quality Definition:
AADL not utterly sustain the language class
characterization because ADL is not developed with
accurate semantics. Natural language is used in
AADL that’s why to complete the architecture
specifications AADL make available intermediate
support and a little hold to the stability of architecture
requirement. [10]
Behavior specification:
To perform behavior specification in AADL
behaviors seize is attached to module specification.
[13]

d) Software Architecture Documentation (SAD)
Similar to Architecture Description Language,
Software Architecture Documentation illustrate
element interfaces, Test scenarios, Subsystems
limitation, third-party module buying choices,
exterior services, Behavioral specification, Team
structure and schedule dependencies. [12] Software
Architecture Documentation consisted on natural
languages and Unified Modeling Language diagrams
and SAD must encompass element relation properties
rules. [14]
Component and Connector support:
A few of UML 2.0 notations are used by Software
Architecture Documentation because UML supports
mutually model based and object oriented perception.
UML 2.0 improved support towards the modeling
architectural problems of the software system.
Among the most important features add up enriched
interfaces, ports, superior components and
connectors.[14][15]
Semantics:
The theory Software architecture Documentation is
based on well defined prescribed rules and
regulations and can be processed and checked by
machine because SAD uses Unified Modeling
Language. 14] [15]
Dynamic Architecture support:
Software architecture Documentation entirely holds
up to grip dynamic architecture as there are a number
of tools available for Unified Modeling Language.
UML have different diagrams like, Object diagram,
Use case diagram, activity diagram etc. [16]

Language Quality Definition:
Due to uncertainty in Software architecture
Documentation SAD provide low support to
consistent architecture and provide intermediate
support in the completeness of architecture
specification. Sometimes SAD uses mutually graphic
and natural language that’s why here be dilemma of
uncertainty. And in a few cases it only utilize natural
language or graphic (UML). [14][15]
Behavior specification:
 Software behavior Document (SBD) describes the
performance of software by setting and requirements.
[15] In Software Architecture Documentation Unified
Modeling Language 2.0 covers behavioral as well as
structural characteristics of software system. [17]

III. OBSERVATIONS

In table 1.0 comparison of ADLs (Wright, Unicon,
AADL) and SAD are given on different parameters.
Following are the meanings of the symbols used in
table 1.0:

Hs: High capability: language gives

comprehensive and unambiguous support

Ms: Medium: capability may be achieved in a
roundabout way. Language offers standard
features

Ls: Low: modest support granted
Ns: No Support

 Table 1.0: RESULT
Attributes Unicon SAD Wright AADL
Consistency of
architecture
Specification

Ls Ms Hs Ls

Completeness
of architecture
Specifications

Ms Ms Hs Ms

Behavior
Specifications

Ns Hs Hs Hs

Textual Hs Hs Hs Hs
High level
Component

Hs Hs Ls Ns

Connector
Support

Ns Ls Hs Ns

Formally
defined
Semantics

Ns Ms Hs Ns

Formally
Analyzable

Ns Ls Hs Hs

Graphical Hs Hs Ns Hs
Dynamic
Architecture
Support

Ns Hs Ns Ms

201

IV. DISCUSSION

From the reviews presented in earlier section we can
assume that there is increasing attention in
Architecture Description Languages as they offer
precise support in the development of software
architecture. Architecture Description languages are
mainly popular in safety critical applications such as
process control, infrastructure, medicine, spaceflight
and various others. Almost every hardware or
software architecture gets benefit from the rigidity
brought by Architecture Description languages.
ADLs has some limitation as well as advantages,
Software architecture documentation sustain equally

Model based and object oriented concepts as
Software architecture documentation mostly uses
unified modeling language in architecture
description, with the help of SAD the limitations of
Architecture Description Languages can be
overcome. In The Table No 2.0 we describe some
strengths and weakness of the ADLs and SAD. Most
of the properties of SAD is because of Unified
Modeling Language (SAD use some of its diagrams)

Table 2.0. Strengths and Weakness of ADLs and
SAD

 Strengths Weakness

ADLs

• ADLs signify software architecture in a
clear and error free manner.

• ADLs hold recitation of system at advanced
stage of notion.

• As the mainstream of ADLs is textual as a
result machine understandable and
appropriate for automation.

• Due to proper representation of ADLs they
permit analysis of architecture’s exactness,
completeness, vagueness and performance.

• ADLs sustain automatic production of
systems which run hardware and
application programs.[8]

• They present graphical language rules and a
textual form also.

• Properly described logics and rules.
• The help for manufacturing and verification

is available by Every ADL.
• The modification of architecture is done by

ADLs.
• ADL is handy and user friendly.
• ADLs overpass the space among research

and the real world, provide the
requirements of practitioner.

• Similarly to Unified Modeling Language
ADL provide multiple visions.

• Only reliable real work no visualizing.
• ADLs are mutually extendable in tools and

language support [17] [18] [19].

• Most of ADLs are domain depended like avionics etc and
are only fit for that type of domains.

• Mostly ADLs are text based and are less attractive for
other domain’s software architects [16] [17] [8].

• The main weakness of ADLs is that they be short of
sustaining tools with the exception of few .[8][18]

SAD

• Stakeholders can easily understand the
system using SAD.

• It gives clear behavior specification as SAD
use unified modeling language.

• SAD offers greatest connector support.
• Provide graphical illustration to software

architecture.
• For the stakeholders it provides multiple

view.
• Several tools are there for unified modeling

language.
• SAD can grip distributed problems. [15]

[16] [17]

• SAD is not appropriate in favor of computerized analysis
of verification and validation of system architecture.

• Due to be deficient in prescribed semantics SAD becomes
basis of haziness and discrepancy in a few cases.

• Lacking of stability is caused due to not up-to-date
documentation of software architecture. [17][18]

• SAD documentation is repeatedly conflicted. Conflicting
move toward in special figures, resembling to conflicted
structure inside and across documents or ambiguous
information. [18] [19]

202

In year 2013 a research study was performed in
which forty-eight practitioners from forty different
information technology organizations of fifteen
countries take part to study that what requirements
industry need from Architecture languages.
The value of ADLs features in precedent and
upcoming projects was studied. Worth of ADLs
features in precedent projects are :

i. Support for iterative architecting,
ii. Versioning,

iii. Well-defined semantics,
iv. Support for multiple architectural views
v. Tool support ,

vi. Analysis ,
vii. Graphical syntax.

In Table 3.0 we provide the summary of our research
work, we evaluated ADL and SAD on the extent of
little, average and high on four factors which we
studied.

Table 3.0
Factors/ ADLs SAD
Language Quality
Definition

High High

Behavior
specification

High average

Semantic average little
Dynamic
Architecture support

average High

Component and
Connector support

average average

V. CONCLUSION

Ever since the early on nineteen’s a number of
ADLs) have been projected that allows the developer
to specifically design their system architectures in a
proper, specific and presentable way. Architecture
description languages are normally recognized with
their ample support for the system architecture
specification and their premature prescribed analysis.
Still, regardless of the strength provided by
architecture description languages. These languages
still have not come into the mainstream. In this
research work we acquired two early prominent
Architecture Description Languages, one recently
and mostly utilized language and also acquired
Software architecture Documentation But the
professionals are still not capable to develop an
Architecture Description language which make
possible the specification of multifarious systems in a
method that allows premature formal analysis and at
the similar moment promises that e architecture is

analyzable, practicable, consistent and absolute .
However in real time application systems and in
small scale applications architecture as compare to
other Architecture Description Languages, Software
architecture Documentation is much consistent, since
SAD uses unified modeling language and due to its
properties and many professionals are moving
towards Unified Modeling Language. UML is cost-
effective and simply understandable. This research
provides information to three communities, 1st is
architect who decide an Architecture Description
Language, 2nd is technology sponsor who fund for
development of architecture language and the 3rd is
language creator. This research is an effort to to
increase the motivation towards software
documentation language. The scope of this paper was
limited. In future work additional effort could have
been expended in identifying a more parameters of
ADLs and SAD.

ACKNOWLEDGEMENT:
This research has been conducted with the partial

support from i-Lab Australia

References

[1] Shaw, DeLine, Klein, Ross, Young, Zelesnik
“Abstractions for Software Architectures and Tools
to Support Them”. 1994

[2] N. Medvidovic, P. Oreizy, J. E. Robbins and R.
N. Taylor.(1996) Using object-oriented typing
to support architectural design in the C2 style.

[3] M. Moriconi, X. Qian and R.
Riemenschneider.(1995) Correct architecture
refinement. IEEE Transactions on Software
Engineering, Special Issue on Software
Architecture

[4] P. Binns and S. Vestal. (1993) Formal real-time
architecturespecification and analysis.

[5] L. Coglianese and R. szymanski,(1993) DSSA-
ADAGE:An Environment for Architecture–
based Avionics development.In Proceedings of
AGARD’93, May 1993.

[6] D. C. Luckham, et all.1995 Specifications and
analysis of system architecture using Rapide.

[7] R. K. Pandey2010. Architecture Description
Languages (ADLs) vs. UML: A Review

 [8] Mert Ozkaya and Christos Kloukinas. (2013)
“Are We There Yet? Analyzing Architecture
Description Languages for Formal Analysis,
Usability, and Realizability”.

[9] Paul C. Clements.1996. “A Survey of

Architecture Description Languages”.

203

[10] George A. Papadopoulos .2008. “Evaluating the
Use of ADLs in Component-Based
Development”.

[11] Shenglin Gui and Lei Luo, .2008. “UCaS: A

Schedulability Analysis Tool for AADL
Models”.

[12] Peter H. Feiler, Bruce A. Lewis, Steve Vestal,
2006. “The SAE Architecture Analysis &
Design Language (AADL) A Standard for
Engineering Performance Critical Systems”.

[13] ROBERT ALLEN and DAVID GARLAN

.1997. “A Formal Basis for Architectural
Connection”.

[14] Book: Documenting Software
Architectures: Views and Beyond. 2003 Paul
Clements.

[15]Klaas Andries de Graaf ,Antony Tang,Peng
Liang And Hans van Vliet. 2012” Ontology-based
Software Architecture Documentation”.

[16]Antony Tang et all.2011. “Software Architecture
Documentation: The Road Ahead”.
[17] B.Bharathi, Dr.D.Sridharan. 2009 “UML as an

Architecture Description Language”.
[18] Matúš NAVAR�ÍK .2005 “Using UML
with OCL as ADL”
[19] Ivano Malavolta, Patricia Lago, Senior Member,

IEEE, Henry Muccini,Patrizio Pelliccione, and
Antony Tang, “What Industry Needs from
Architectural Languages: A Survey”, IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 39, NO. 6, JUNE 2013

[20] Werner Heijstek et all .2011 “Experimental
Analysis of Textual and Graphical
Representations for Software Architecture

204

