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Abstract—In this paper, we study constant-time algorithms on
complex networks. In a recent work presented in ESA 2016,
the author introduced a natural class of multigraphs called
hierarchical-scale-free (HSF) multigraphs and showed that a
very wide subclass of HSF is hyperfinite. Based on this result,
a surprising result such that every property is constant-time
testable for the subclass was obtained. However, this result is
theoretical, and the algorithm obtained directly from it may
not be practical.

In this paper, first we present the result of our paper of
ESA 2016, and next we consider what kind of properties are
“efficiently” testable in practice. For this purpose, we consider
hereditary properties. We show that for hyperfinite graph class,
e.g., HSF, any hereditary property can be represented by the
forbidden graph subset such that the number of graphs in the
subset is bounded by a constant. From this result, it can be
considered that to test a hereditary property is relatively easy.

1. Introduction

1.1. Purpose of this paper

This paper studies how to solve problems on complex
networks in very short time. For this purpose, the author
recently presented a class of multigraphs called Hierarchical
Scale Free, or HSF in short [14], [15], which may be able
to model complex networks since it satisfies some typical
properties, e.g. scale-freeness. For this class we showed the
following result:

For a very large subclass of HSF, every property
can be testable in constant-time [15].

The purpose of this paper is

(1) introducing the above result, and
(2) considering the direction of research after the above

result, and showing that hereditary properties have
good characterizations to be efficiently testable.

1.2. Big data and property testing

How to handle big data is a very important issue in
computer science. In the theoretical area, developing effi-
cient algorithms for handling big data is an urgent task. For

this purpose, constant-time algorithms look like they could
be powerful tools, as they are able to read very small parts
(constant size) of inputs.

Property testing is the most well-studied area in
constant-time algorithms. A testing algorithm (or a tester)
for a property accepts an input if it has the stipulated
property and rejects it if it is far away from having the
stipulated property with a high probability (e.g., at least 2/3)
by reading a constant part of the input. A property is said
to be testable if there is a tester [10].

Property testing of graph properties has been well stud-
ied and many fruitful results have been obtained [2], [3],
[7], [10], [11], [12], [13], [19], [21], [23], [24]. Testers
on the graphs are separated into three groups according to
model: the dense-graph model (the adjacent-matrix model),
the bounded-degree model, and the general model.

The dense-graph model is the best clarified: In this
model, the characteristics of testable properties have been
obtained [2]. However, graphs based on actual networks are
usually sparse and thus unfortunately the dense-graph model
does not fit. Studies on the bounded-degree model have been
proceeding recently. One of the most important findings for
this model is that every minor-closed property is testable [3].
This result can be extended to the surprising result that
every property of a hyperfinite graph is testable [24]. (The
definition of “hyperfinite” will be shown later.) However,
graphs based on actual models have no degree bounds, i.e., it
is known that web-graphs have hubs [1], [18], which have a
large degree, and, unfortunately once again, these algorithms
do not work for them.

1.3. A class HSF and constant-time testablity of the
class

Consequently from the situation mentioned above, we
need a new algorithm for treating actual big graphs. Typical
big-data graph models are scale-free networks, which are
characterized by the power-law degree distribution. Many
models have been proposed for scale-free networks [1], [4],
[5], [6], [9], [18], [22], [25], [26], [27], [28].

Recently, a promising model based on another property
of a hierarchical isomorphic structure has been presented:
If we look at a graph in a broad perspective, we find a
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similar structure to local structures. Shigezumi, Uno, and
Watanabe [26] presented a model that is based on the
idea of the hierarchical isomorphic structure of power-law
distribution of isolated cliques. An idea of isolated cliques
was given by Ito and Iwama [16], [17], and the definition
is as follows. A clique is a subgraph in which there exists
an edge between every pair of vertices. For a nonnegative
integer c ≥ 0, a c-isolated clique is a clique such that the
number of outgoing edges (edges between the clique and
the other vertices) is less than ck, where k is the number
of vertices of the clique. A 1-isolated clique is sometimes
simply called an isolated clique.

Based on the model of [26], we introduced a class of
multigraphs, hierarchical scale-free multigraphs (HSF, Def-
initions 3.2), which represents natural scale-free networks,
and we showed the following result (Theorem 3.4):

Every property is testable on HSF if the power-law
exponent1 is greater than two [15].

Given this result, many problems on actual scale-free
big networks will prove to be solvable in constant time.
Although this result is an application of the algorithms of
[24], which is a result on bounded-degree graphs, HSF is not
a class of bounded-degree graphs. This is the first universal
result of constant-time testability on a class of graphs made
by a model of scale-free networks.

1.4. And then what should we solve?

The above result (Theorem 3.4) is not perfect of course:
There are some important problems that should be solved.
Especially we mainly consider the following problem:

The results is purely theoretical. In other words,
some algorithms directly obtained from the result
may require very large constant-time, and thus it
may be completely useless in practice. However
some properties may be testable in small constant-
time, i.e., efficiently testable. We should try to
clarify what properties are testable efficiently.

We will explore ways to get the solution on this problem.
For this purpose, we will prove some lemmas on hereditary
properties (properties that is closed under vertex deletion).
From them, we observe that these properties look efficiently
testable.

2. Preliminaries

2.1. Basic terms

In this paper, we consider undirected multigraphs with-
out self-loops. We simply call this type of multigraph a
“graph” in this paper and use G = (V,E) to denote it, where
V is the vertex set and E is the edge (multi)set. Sometimes
V and E are denoted by V [G] and E[G], respectively.
Henceforth, we use “set” to refer to a multiset for notational

1. This is a parameter of HSF. For the definition, see the sentence just
after Definitions 3.1.

simplicity. Throughout this paper, n is used to denote the
number of vertices of a graph, i.e., |V | = n.

For a graph G = (V,E) and vertex subsets X,Y ⊆
V , EG(X,Y ) denotes the edge set between X and Y , i.e.,
EG(X,Y ) = {(x, y) ∈ E | x ∈ X, y ∈ Y }. EG(X,V \X)
is also simply written as EG(X). |EG(X)| is denoted by
dG(X). For a vertex v ∈ V , the number of edges incident
to v is called the degree of v. A singleton set {x} is often
written as x for notational simplicity. E.g., the degree of v is
represented by dG(v). The subscript G in the above EG(∗),
dG(∗), etc., may be omitted if it is clear.

For a vertex v ∈ V , ΓG(v) denotes the set of vertices
adjacent to v, i.e., ΓG(v) := {u ∈ V | (v, u) ∈ E}. Note
that |ΓG(v)| may not be equal to dG(v) as parallel edges
may exist. For a graph G = (V,E) and a vertex subset
X ⊆ V , the subgraph induced by X is defined as G(X) =
(X, {(u, v) ∈ E | u, v ∈ X}).

For a vertex subset X ⊆ V , a contraction of X is defined
as an operation to (i) replace X with a new vertex vX ,
(ii) replace each edge (v, u) in E(X) (v ∈ X,u ∈ V \X)
with a new edge (vX , u), and (iii) remove all edges between
vertices in X . That is, by contracting X ⊆ V , a graph
G = (V,E) is changed to G′ = (V ′, E′) such that

V ′ = V \X ∪ {vX}, and

E′ = E\{(v, u) | v ∈ X,u ∈ V }
∪{(vX , u) | (v, u) ∈ E, v ∈ X,u ∈ V −X}.

We identify the above (vX , u) ∈ E′ with (v, u) ∈ E. In
other words, we say that (v, u) remains in G′ (as (vX , u)).
Note that the graphs are multigraphs, and thus if there are
two edges (v, u), (v′, u) ∈ E for v, v′ ∈ X , v �= v′ and
u ∈ V \X , then two parallel edges, both represented by
(vX , u), one of which corresponds to (v, u) and the other
of which corresponds to (v′, u), are added to E′. Also note
that none of the graphs considered in this paper contain
self-loops, and hence an edge (v, v′) ∈ E with v, v′ ∈ X is
removed by contracting X .

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are
isomorphic if there is a one-to-one correspondence Φ :
V1 → V2 such that EG1

(u, v) = EG2
(Φ(u),Φ(v)) for all

u, v ∈ V1. A graph property (or property, for short) is a
(possibly infinite) family of graphs, which is closed under
isomorphism.

2.2. Testers and isolated cliques

Definitions 2.1 (distance, ε-far, and ε-close). Let G =
(V,E) and G′ = (V ′, E′) be two graphs with |V | =
|V ′| = n vertices. Let m(G,G′) be the number of edges
that need to be deleted and/or inserted from G in order to
make it isomorphic to G′. The distance between G and
G′ is defined as2 dist(G,G′) = m(G,G′)/n. We say that

2. The distance defined here may be larger than 1 as m(G,G′) > n
may occur. (In the bounded-degree model it is defined as dist(G,G′) =
m(G,G′)/dn.) However, here we consider sparse graphs and they have
an implicit upper bound of the average (not possibly maximum) degree,
say d, and thus dist(G,G′) is bounded by d.
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G and G′ are ε-far if dist(G,G) > ε; otherwise ε-close.
Let P be a non-empty property. The distance between
G and P is dist(G,P ) = minG′′∈P dist(G,G′′). We say
that G is ε-far from P if dist(G,P ) > ε; otherwise ε-
close.

Definitions 2.2 (testers). A testing algorithm for a property
P is an algorithm that, given query access to a graph G,
accepts every graph from P with a probability of at least
2/3, and rejects every graph that is ε-far from P with
probability at least 2/3. Oracles in the general graph
model are: for any vertex v, the algorithm may ask for
the degree d(v), and may ask for the ith neighbor of the
vertex (for 1 ≤ i ≤ d(v)).3 The number of queries made
by an algorithm to the given oracle is called the query
complexity of the algorithm. If the query complexity of
a testing algorithm is a constant, independent of n (but it
may depend on ε), then the algorithm is called a tester4.
A (graph) property is testable if there is a tester for the
property.

Definitions 2.3 (isolated cliques [16]). For a graph G =
(V,E) and a real number c ≥ 0, a vertex subset Q ⊆ V
is called a c-isolated clique if Q is a clique (i.e., (u, v) ∈
E, for all u, v ∈ Q and u �= v) and dG(Q) < c|Q|. A 1-
isolated clique is sometimes called an isolated clique. In
this paper, we don’t use c > 1 except section 6 (summary
and future work).

Definitions 2.4. Let E(G) be the graph obtained from G
by contracting all isolated cliques. Two distinct isolated
cliques never overlap, except in the special case of
double-isolated-cliques, which consists of two isolated
cliques with size k sharing k − 1 vertices. A double-
isolated-clique Q has no edge between Q and the other
part of the graph (i.e., dG(Q) = 0), and thus we specially
define that a double-isolated-clique in G is contracted
into a vertex in E(G). Under this assumption, E(G) is
uniquely defined.

2.3. Hyperfiniteness and the universal results of
Newman and Sohler [24]

The following result is one of the most important results
in the area of property testing. This result is applicable for
the class of hyperfinite bounded-degree graphs.

Definitions 2.5 (hyperfinite [8]). For real numbers t > 0
and ε > 0, a graph G = (V,E) consisting of n vertices
is (t, ε)-hyperfinite if one can remove at most εn edges
from G and obtain a graph whose connected components
have size at most t. For a function ρ : R+ → R+, G is
ρ-hyperfinite if it is (ρ(ε), ε)-hyperfinite for all ε > 0. A

3. Although asking whether there is an edge between any two vertices
is also allowed in the general graph model, the algorithms we use in this
paper do not need to use this query.

4. In this paper, a tester may be nonuniform, i.e., it may depend on n
and ε.

family G of graphs is ρ-hyperfinite if all G ∈ G are ρ-
hyperfinite. A family G of graphs is hyperfinite if there
exists a function ρ such that G is ρ-hyperfinite.

Hyperfinite is a large class, as it is known that any
minor-closed property is hyperfinite in the bounded-degree
model. From the viewpoint of testing, the importance of
hyperfiniteness stems from the following result.

Theorem 2.6 ( [24]). For the bounded-degree model, any
property is testable for any class of hyperfinite graphs.

This result is very strong, but there is a problem in that
the result works on bounded-degree graphs and it is natural
to consider that actual scale-free networks do not have a
degree bound.

3. Classes SF and HSF, and Hyperfiniteness

3.1. Class Scale-Free (SF)

In [15], we applied the universal algorithm of [24] to
scale-free networks. We formalized two natural classes, SF
and HSF that represent scale-free networks5. The latter is
a subclass of the former.

Definitions 3.1 (Scale-Free Graphs [15]). For positive real
numbers c > 1 and γ > 1, a class of scale-free graphs
(SF) SF(c, γ) consists of (multi)graphs G = (V,E)
for which the following condition holds: Let νi be the
number of vertices v with d(v) = i. Then:

νi ≤ cni−γ , ∀i ∈ {2, 3, . . . , }. (1)

�

The above property (1) is generally called a power-law
and we call γ a power-law exponent. In many actual scale-
free networks, it is said that 2 < γ < 3 [1]. That is, SF
is a class of multigraphs that obey the power-law degree
distribution.

It was shown that that this class is ε-close to a bounded-
degree class if γ > 2 (Lemma 3.5). Moreover in [15], after
showing this property, the hyperfiniteness of the class was
shown.

3.2. Cluster coefficient and hyperfiniteness

Hyperfiniteness seems to be closely related to a high
cluster coefficient, where the cluster coefficient cl(G) of a
graph G = (V,E) is defined as follows6: For a graph G =
(V,E) and a vertex v ∈ V , the (local) cluster coefficient of
v is

clG(v) :=
|{(u,w) ∈ E | u,w ∈ ΓG(v), u �= w}|

(|ΓG(v)|
2

) .

5. HSF was introduced in the preliminary version of this paper [14].
However, the definition in this paper is more general (wider) than in the
preliminary version.

6. There is another way to define the cluster coefficient: 3 ×
(# of cycles of length three)/(# of paths of length two). Although these
two values are different generally, they are close under the assumption
of the power-law degree distribution.
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And the cluster coefficient of G is

cl(G) :=
1

n

∑

v∈V
clG(v).

It is said that cl(G) is Θ(1) for actual social networks,
while limn→∞ cl(G) = 0 for random graphs.

These three characterizations, “high clustering coeffi-
cient,” “existence of isolated cliques,” and “hyperfiniteness”
appear to be closely related to each other. In fact, it is readily
observed that if clG(v) = 1 for a bounded-degree graph G
(the degree bound is d), then G consists of only (completely)
isolated cliques with size at most d+1, and G is (d+1, 0)-
hyperfinite!

Unfortunately, however, it is also observed that for any
0 < c < 1, there is a class of bounded-degree graphs G such
that limn→∞ cl(G) = c and it is not (t, ε)-hyperfinite for any
pair of constants t and ε < 1/2, e.g., G = (V,E) consists
of n/d cliques of size d, and random n/2 edges between
vertices in different cliques. Each vertex has d− 1 adjacent
vertices in its clique and one adjacent vertex outside the
clique. See Fig. 1. To separate this graph into constant-sized

Figure 1. An example of non-hyperfinite graphs having high cluster coef-
ficient.

connected components, almost all of the edges between
cliques (their number is n/2) must be removed. It follows
that this graph is not hyperfinite for any ε < 1/2. On the
other hand, the cluster coefficient is

cl(G) =

(
d−1
2

)
(
d
2

) = 1− 2

d
> c

if d > 2
1−c , i.e., the cluster coefficient of graphs in this class

are greater than c.

3.3. Hierarchical structure of complex networks
and class HSF

However, we do not need to give up here, as the above
model is very special, e.g., by contracting each isolated
clique, it becomes a mere random graph with n/d vertices7.
From this fact, the hierarchical structure of a high cluster
coefficient looks important. The model presented by [26]
has such a structure. Based on this model, we presented the
following class of multigraphs:

Definitions 3.2 (Hierarchical Scale-Free Graphs [15]). For
positive real numbers c, γ > 1 and a positive integer
n0 ≥ 1, a class of hierarchical scale-free graphs (HSF)
HSF = HSF(c, γ, n0) consists of (multi)graphs G =
(V,E) for which the following conditions hold:

(i) G ∈ SF(c, γ)
(ii) Consider the infinite sequence of graphs G0 = G,

G1 = E(G0), G2 = E(G1), . . .. If |V [Gi]| ≥ n0,
then Gi includes at least one isolated clique Q ⊆ V
with |Q| ≥ 2. (Note that if Gk has no such isolated
clique, then Gk = Gk+1 = Gk+2 = · · · .)

In [15] the following results were shown.

Theorem 3.3 ( [15]). For any HSF = HSF(c, γ, n0) with
γ > 2 and any real number ε > 0, there is a real
number t3.3 = t3.3(HSF , ε) such that HSF is (t3.3, ε)-
hyperfinite.

In [15], a global algorithm for obtaining the partition
realizing the hyperfiniteness of Theorem 3.3 was given.
The algorithm is deterministic, i.e., if a graph and the
parameter ε are fixed, then the partition is also fixed. The
algorithm can be easily revised to a local algorithm and we
obtain a deterministic partitioning oracle to get the partition
(Lamma 4.2). Note that almost all algorithms for partitioning
oracles presented to date have been randomized algorithms8.
By using this partitioning oracle and an argument similar to
one used in [24], the following theorem follows.

Theorem 3.4 ( [15]). Any property is testable for
HSF(c, γ, n0) with γ > 2.

As stated earlier, for the bounded-degree model, New-
man and Sohler [24] presented a universal tester (which can
test any property) for hyperfinite graphs. In the general graph
model, although some works have tried to found universal
tester [7], [19], [23], these results are weaker than for the
bounded-degree graph model and the dense graph model.

This paper gives a universal tester that can test every
property on a natural class of scale-free multigraphs in
constant time. This is the first result for universal constant-
time algorithms which cover a class of graphs made by a
model of scale-free networks.

7. However, note that this model is not useless, since it is investigated
in some works [20].

8. The algorithm for testing forests presented by Kusumi and Yoshida
[19] may be only deterministic one so far. That is, our partitioning oracle
looks the first deterministic one for a graph class that includes cycles.
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In this paper we omit to show the proofs of Theorems 3.3
and 3.4 (see [15]). However we only show that SF (and thus
HSF also) can be treated as a bounded-degree graph for
testing in the next subsection.

3.4. Degree bounding

For a graph G and a nonnegative integer d ≥ 0, G|d is a
graph made by deleting all edges incident to each vertex v
with d(v) > d from G. Note that G|d is a bounded-degree
graph with degree bound d.

Lemma 3.5. For any SF = SF(c, γ) with γ > 2, and any
positive real number ε > 0, there is a constant δ3.5 =
δ3.5(ε, c, γ) such that for any graph G ∈ SF , G|δ3.5 is
ε-close to G.

Before showing a proof of this lemma, we introduce
some definitions. Riemann zeta function is defined by
ζ(γ) =

∑∞
i=1 i

−γ . This function is known to converge to a
constant (ζ(γ) < 1+(γ−1)−1) for any γ > 1. We introduce
a generalization of this function by using a positive integer
k ≥ 1 as ζ(k, γ) =

∑∞
i=k i

−γ . Note that ζ(γ) = ζ(1, γ).

Lemma 3.6. For any ε > 0 and γ > 1, there is an integer
k3.6 = k3.6(ε, γ) ≥ 1 such that ζ(k3.6, γ) < ε.

Proof: It is clear from the above fact that ζ(γ) converges
for every γ > 1. �

Proof of Lemma 3.5: Let d be an arbitrary positive integer.
Let md be the number of removed edges to make G|d from
G. From (1),

md =

∞∑

i=d+1

iνi ≤
∞∑

i=d+1

cni−(γ−1) = cnζ(d+ 1, γ − 1).

From the assumption of γ > 2 and Lemma 3.6, ζ(d +
1, γ − 1) < ε/c if d+ 1 ≥ k3.6(ε/c, γ − 1). Thus by letting
δ3.5(ε, c, γ) = k3.6(ε/c, γ− 1)− 1, we have mδ3.5 < εn. �

From here, we denote the above δ3.5(ε, c, γ) by δ for
notational simplicity.

4. Testing Algorithm

4.1. Deterministic partitioning oracle

The global partitioning algorithm, which is presented
in [15], of Theorem 3.3 can be easily revised to run lo-
cally, i.e., a “partitioning oracle” based on this algorithm
can be obtained. A partitioning oracle, which calculates a
partition realizing hyperfiniteness locally, was introduced by
Benjamini, et al. [3] implicitly and by Hassidim, et al. [13]
explicitly. It is a powerful tool for constructing constant-
time algorithms for sparse graphs. It has been revised by
some researchers and Levi and Ron’s algorithm [21] is the
fastest to date. As mentioned before almost all algorithms
for partitioning oracles presented to date have been random-
ized algorithms. Our algorithm, however, does not use any

random valuable and it runs deterministically. That is, we
call it a deterministic partitioning oracle, which is rigorously
defined as follows9:

Definitions 4.1. O is a deterministic (t, ε)-partitioning oracle
for a class of graphs C, if, given query access to a graph
G = (V,E), it provides query access to a partition P
of G. For a query about v ∈ V , O returns P(v). The
partition has the following properties: (i) P is a function
of G, t, and ε. (It does not depend on the order of
queries to O.) (ii) For every v ∈ V , |P(v)| ≤ t and
P(v) induces a connected subgraph of G. (iii) If G ∈ C,
then |{(u, v) ∈ E | P(u) �= P(v)}| ≤ ε|V |.

Lemma 4.2 ( [15]). There is a deterministic (t3.3, ε)-
partitioning oracle OHSF for HSF with γ > 2 with

query complexity δO(δ
2/ε+n0) for one query.

We omit to show the proof of this lemma (see [15]).

4.2. (d, t)-disks and frequency vectors

The method of constructing a testing algorithm based on
the partitioning oracle of Lemma 4.2 is almost the same as
the method used in [24]. Before showing the algorithm, we
introduce some notation as follows.

A connected graph G = (V,E) with a specified marked
vertex v is called a rooted graph, and we sometimes say
that G is rooted at v. A rooted graph G = (V,E) has a
radius t, if every vertex in V has a distance at most t from
the root v. Two rooted graphs are isomorphic if there is a
graph isomorphism between these graphs that identifies the
roots with each other. We denote by N(d, t) the number of
all non-isomorphic rooted graphs with a maximum degree
of d and a maximum radius of t. For a graph G = (V,E),
integers d and t, and a vertex v ∈ V , let BG(v, d, t) be the
subgraph rooted at v that is induced by all vertices of G|d
that are at distance t or less from v. BG(v, d, t) is called a
(d, t)-disk around v. From these definitions, the number of
possible non-isomorphic (d, t)-disks is at most N(d, t).

We use a distribution vector, which will be defined in
Definition 4.3, of rooted subgraphs consisting of at most a
constant number of vertices.

Definitions 4.3. For a graph G = (V,E) and integers d and
t, let diskG(d, t) be the distribution vector of all (d, t)-
disks of G, i.e., diskG(d, t) is a vector of dimension
N(d, t). Each entry of diskG(d, t) corresponds to some
fixed rooted graph H , and counts the number of (d, t)-
disks of G|d that are isomorphic to H . Note that G|d
has n = |V | different disks, thus the sum of entries in
diskG(d, t) is n. Let freqG(d, t) be the normalized distri-
bution, namely freqG(d, t) = diskG(d, t)/n. For a vector
v = (v1, . . . , vr), its l1-norm is ||v||1 =

∑r
i=1 |vi|. The

l1-norm is also the length of the vector. We say that the
two unit-length vectors v and u are ε-close for ε > 0 if
||v − u||1 ≤ ε.

9. However, since Levi and Ron’s algorithm [21] looks fast, using it may
be better in practice.
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By using the same discussion as in Theorem 3.1 in [24],
the following lemma is proven.

Lemma 4.4. There exist functions λ4.4 = λ4.4(HFS, ε),
d4.4 = d4.4(HFS, ε), t4.4 = t4.4(HFS, ε), and N4.4 =
N4.4(HFS, ε) such that for every ε > 0 the following
holds: For every G1, G2 ∈ HFS on n ≥ N4.4 vertices,
if |freqG1

(d4.4, t4.4)− freqG2
(d4.4, t4.4)| ≤ λ4.4, then G1

and G2 are ε-close. �

4.3. Abstract of the algorithm

A sketch of the algorithm is as follows. Let G = (V,E)
be a given graph and P be a property to test. First, we
select some (constant) number 	 = 	(ε) of vertices vi ∈ V
(i = 1, . . . , 	) and find P(vi) given by Theorem 3.3. This
is done locally (shown by Lemma 4.2). Consider a graph
G′ := P(v1)∪· · ·∪P(v�). Here, freqG(d, t) and freqG′(d, t)
are very close with high probability.

Next, we calculate minG∈P |freqG′(d, t) − freqG(d, t)|
approximately. There is a problem in that the number of
graphs in P is generally infinite. However, to approximate
it with a small error is adequate for our objective, and thus

it is sufficient to compare G′ with a constant
number of vectors of freq(d, t).

(Note that calculating such a set of frequency vectors re-
quires much time. However, we can say that there exists
such a set. This means that the existence of the algorithm is
assured.) The algorithm accepts G if the approximate dis-
tance of minG∈P |freqG′(d, t)−freqG(d, t)| is small enough,
and otherwise it is rejected.

The above algorithm is the same as the algorithm pre-
sented in [24] except for two points: in our model: (1)
G is not a bounded-degree graph, and (2) G is a multi-
graph. However, these differences are trivial. For the first
difference, it is enough to add an ignoring-large-degree-
vertex process, i.e., if the algorithm find a vertex v hav-
ing a degree larger than d4.4, all edges incident to v are
ignored. By adding this process, G is regarded as G|d4.4.
This modification does not effect the result by Lemma 3.5.
For the second difference, the algorithm treats bounded-
degree graphs as mentioned above, and the number of non-
isomorphic multigraphs with n vertices and degree upper

bound d4.4 is finite (bounded by O(d4.4
n2

)).

Proof of Theorem 3.4: Obtained from the above discussion.
�

5. Practically tastable properties

Theorem 3.4 assures that every property is testable (in
constant-time). However, this result is only theoretical one.
In fact, an algorithm directly obtained from the proof of the
theorem is generally impractical. Because, it requires the set
of the frequency vectors freq(d, t) that satisfy the property,
and the number of such vectors should be generally very

huge10. Moreover, as pointed out in the proof, we only know
the existence of the set of the vectors, and we don’t know
any efficient way to get it.

Here we try to find properties that is testable in not large
constant-time. We are considering the following properties:

Definitions 5.1. A property is called hereditary if it’s closed
under vertex-deletions, i.e., for any G ∈ P , any induced
subgraph G′ of G is also in P .

Many well-studied properties are known to be hereditary,
e.g., planar, k-colorable (for any integer k ≥ 0), H-free
(for any graph H), any minor-closed property (i.e., closed
under vertex- and edge-deletions and edge-contractions), any
monotone property (i.e., closed under vertex- and edge-
deletions), perfect, etc.

The following useful result has been known:

Lemma 5.2. For any hereditary property P , there is a
(possibly infinite) set HP of graphs such that G ∈ P
if and only if G doesn’t include any H ∈ HP as an
induced subgraph.

Proof: Let HP be the set of graphs H such that H /∈ P .
We show that HP is the desired set.

“If part” is clear since if G /∈ P , then clearly G ∈ HP
itself is a subset of G.

For showing “only-if part,” we assume that G includes a
graph H ∈ HP as an induced subgraph. From the definition
of HP , H /∈ P . From that P is hereditary, G /∈ P . (Since
if G ∈ P , then an induced subgraph H of G must not be
in P .) �

Lemma 5.3. Let P be a hereditary property such that ∀H ∈
HP is connected. For a ρ-hyperfinite graph class G and
a positive real vale ε > 0, there are an integer t =
t5.3(ρ, ε) and a finite set of graphs HP,t that includes
graphs having at most t vertices such that

(i) for any G ∈ P ∩G, G doesn’t include any H ∈ HP,t

as an induced subgraph, and
(ii) for any G ∈ G that is ε-far from P , G includes an

H ∈ HP,t as an induced subgraph.

Proof: Let t := ρ(ε/2) and

HP,t := {H ∈ HP | H has at most t vertices}.
The number of non-isomorphic graphs with at most t ver-

tices is at most 2(
t
2), and thus HP,t is a finite set.

Assume that G ∈ P . From Lemma 5.2 and HP,t ⊆ HP ,
G contains no H ∈ HP,t as an induced subgraph. Therefore
(i) is proven.

Next, assume that G is ε-far from P . G is ρ-hyperfinite,
and hence G is (ρ(ε/2), ε/2)-hyperfinite. Thus there is a
graph G′ such that every connected component in it consists
of at most t = ρ(ε/2) vertices, and dist(G,G′) ≤ ε/2. From
that G is ε-far from P , it follows that G′ is ε/2-far from P .
Thus G′ includes at least one H ∈ HP . From that ∀H ∈ HP

10. The size is in fact bounded by a constant. However it is really large
constant for some ε.
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is connected and that every connected component of G′ has
at most t vertices, it follows that G′ includes at least one
H ∈ HP,t, and thus G does also. Therefore (ii) is proven.

�

From Lemma 5.3, we may have a practical algorithm as
follows:

Procedure HEREDITARY-HYPERFINITE-TEST

begin
Step 1 select constant number s of vertices v1, . . ., vs

uniformly at random;
Step 2 find connected components C1, . . ., Cs such that

vi ∈ Ci and Ci is the connected component
obtained by the partitioning oracle;

Step 3 if at least one Ci includes an H ∈ HP,t as an
induced subgraph, then “reject,” and otherwise
“accept.”

end.

The practicality of this algorithm depends on the size
of |PH, t| and t. For example, triangle-free, claw-free, and
k-leaves-star-free (for small k) is considered to be easy.

6. Summary and future work

We first presented the result of [15] such that a natural
class of multigraphs HSF representing scale-free networks,
and that a wide subclass of it is hyperfinite (Theorem 3.3),
and that every property is testable on the class (Theo-
rem 3.4).

Next we considered that a property that may be tested
in practice. We showed that hereditary properties look ef-
fectively testable.

For future work, for theoretical side, extending the re-
sults of Theorems 3.3 and 3.4 is important problem. HFS
doesn’t include every graphs model by other known complex
networks. We are considering to extend the constant-time
testable set of multigraphs to include such known models.

For practical side, by using real network data, to check
how our tester works and what properties, especially hered-
itary ones, are testable efficiently is also an important future
problem.
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