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Abstract— Robot-assisted natural disaster management is 
recently employed to aid human rescuers at diverse disaster sites. 
Due to its compactness and availability, drone has become an 
effective tool for searching survivors from confined space such as 
collapsed building or underground area. However, the current 
scope of research in this field is limited because the research 
tends to focus on increasing accuracy of 3d mapping, constructed 
by controlling quadrotor flight at disaster sites. Perceiving 
disaster environment is necessary for rescue mission, but finding 
victims at the earliest time is more critical for practical rescue 
operations. In this work, we propose an overall architecture for 
drone hardware that enables fast exploration of GPS-denied 
environment, and practical methods for victim detection are 
introduced. We employ DJI Matrice 100 and utilize hokuyo lidar 
for global mapping and Intel RealSense for local mapping. Our 
results show that fusing these sensors can assist rescuers to find 
victims of natural disaster in unknown environments, and the 
detection system is insensitive to illumination change. 
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I. INTRODUCTION

A new trend in managing and accessing natural disaster is 
to employ robot as the platform for disaster management 
application. Over the past years, robotic deployment in natural 
disaster management has been actively performed. In the case 
of the La Conchita mudslide in 2005, a shoebox-sized wheeled 
robot was inserted into the damaged house to scan for victims 
[1]. At the Earthquake-Hit Mirandola in 2012, a team of 
humans and robots (UGV, UAV) worked together with the 
Italian National Fire Corps [2]. Recently, a field experiment 
was also conducted with a team of ground and aerial robots 
toward the mapping of an earthquake damaged building at 
2011 Tohoku earthquake [3]. Fig.1 summarizes these incidents 
and demonstrates that utilizing robots in such instances is 
essential for humans to avoid or mitigate further accident.   

Among various types of robots, unmanned aerial vehicles, 
also known as drones, have been extensively developed to 
monitor and access disaster sites. Drones are cost-effective, 
compact, and easy to operate in cluttered environment [4], thus 
become affordable candidates for disaster assistance. As 
reference, survey of UAV-assisted disaster management is 
reviewed in [5]. A major application of drone-assisted disaster 
management is the autonomous navigation through the 
confined space [6], [7], [8], [9]. In particular, damaged 

buildings from earthquake are challenging to be explored by 
human rescuers due to darkness and possible collapse, and 
drones can be fused with sensors to obtain 3D mapping of the 
unknown area and prevent human rescuers from additional 
accident [10], [11], [12]. Although many researchers in this 
field study on drone’s autonomous navigation relying on 
SLAM, there exist difficulties in implementing their algorithms 
in real world application. One consideration is GPS-denied 
environment for disaster site, and another concern arises when 
there is limited lighting. Current quadcopter-related research 
tends to focus on increasing the accuracy of drone pose 
estimation and localization [8], [9], [13]; however, in the field 
of disaster management, trading off the accuracy with quick 
tracking of victims is necessary.  

The key contribution of this work is the design of drone 
system architecture focusing on the real world problems that 
may happen in practical rescue operations. Fig.1 (D) shows the 
real world challenges that human experiences due to limited 
lighting and unknown building structure. We propose to 
develop the drone system that is robust to these problems by 
utilizing lidar and infrared depth camera. The rest of the paper 
is structured as follows. Section II reviews the recent works on 
drone system. Section III addresses our main drone architecture, 
and experimental sensor output result is presented in Section 
IV. Concluding remarks are provided in Section V. 
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Figure 1. Natural disaster examples. (A) La Conchita mudslide in 2005. 
(B) Mirandola earthquake in 2012. (C) Tohoku earthquake in 2011. (D) 
Firefighters at disaster site.
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II. RELATED WORK

In recent years, autonomous quadrotor platform has 
received increased attention from the research community. 
Many authors have developed drone architectures capable of 
simultaneous localization and mapping (SLAM) [6], [7], [8], 
[9], [10], which becomes the basis for autonomous navigation 
for indoor flying. In particular, these architectures benefit 
UAV-assisted natural disaster management. 

While some researchers [10], [12] use GPS information for 
quadrotor navigation, we propose to develop drone architecture 
that is able to perform SLAM with onboard sensors. In general, 
there is no available GPS signal at disaster sites, and 
establishing sensor framework for navigating these unknown 
areas is crucial. Chen et al. [14] generated collision-free 
trajectories for quadrotor flight using 3D grids in unknown 
environments. Camera-based [8], [9], [15] approaches known 
as visual SLAM also have been extensively studied to aid 
autonomous navigation. In [15], the author fused laser readings 
with visual SLAM to robustly track aerial vehicle positions.
Saska et al. [16] developed groups of aerial vehicles localizing 
themselves in GPS-denied environments using visual relative 
localization. 

Although vision-based techniques can help provide pose 
estimation and 3D reconstruction, these approaches are 
difficult to implement in the limited lighting condition. Few 
works [6], [7] present autonomous indoor flying in GPS-denied 
areas, with a help of laser rangefinder sensor, which can 
resolve the lighting problems. Our system extends these works 

and propose to fuse IR depth camera with lidar in order to 
provide local (nearby victims) and global (overall floor plan) 
maps of disaster area. This architecture allows fast tracking of 
survivors and thus effective in practical rescue operations. 

III. OVERVIEW OF RESCUE OPERATION

In this section, we introduce our system from the big 
picture of rescue operation process to the low level of 
quadrotor hardware setup. We focus on real world application 
of our architecture and explain the practical use of employed 
sensors for effective rescue operation. 

A. Drone-Assisted Disaster Management 
Fig.2 illustrates the overall rescue operation. The rescue 

center collects necessary information regarding the natural 
disaster sites and oversees entire rescue procedure. Any image 
or data obtained by robots throughout the rescue mission can 
be visualized on the screen of the rescue center. Virtual reality 
technology enables human to take over the control of rescue 
robots, and the robotic teleoperation provides 3D scanned 
environment [17]. As for the robotic deployment scene, all the 
robots communicate via wireless network with each other to 
cooperate or complement one another. Since there can be 
limited lighting condition, sensors such as laser scanner and 
infrared depth camera, which are insensitive to illumination 
change, are mounted on the robots for navigation and 3D 
reconstruction. The robots also guide rescuers and victims to 
desired places and may carry emergency supplies for survivors. 

Figure 2. Illustrating the rescue operation overview. Rescue center oversees and controls the overall rescue operation process, and virtual reality allows 
manual operation of robots by visualizing 3D space of the disaster site.
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B. Robot Hardware Architecture 
As the platform of robotic deployment in natural disaster, 

we use DJI Matrice 100 drone. This quadcopter is highly 
customizable and supports multiple ports for third party 
components connection. Dual battery components allow up to 
40 minutes of hovering time, and rigid lightweight body frame 
can lift up 1kg of payload. Maximum speed is nearly 20m/s. 
We argue that these specifications are suitable for disaster 
management application since its long hovering time and high 
speed flight with multiple sensors will locate victims at the 
earliest time.  

As for the onboard hardware, we mount a Hokuyo lidar 
(UTM-30LX scanning laser rangefinder), an Intel RealSense 
camera (R200), and a drone computer (Manifold) (Fig.3). The 
lidar measurement is reliable up to 30 meters and available at 
25 msec per scan, and the depth camera measurement ranges 
up to 10m with real-time RGB and stereoscopic IR cameras. 
The Manifold is a GPU-supported computer featuring an 
NVIDIA Tegra K1 SOC. Matrice 100 is able to carry these 
modules, and all sensors and CPU processing are performed on 
board. 

C. Sensor Application for Rescue Operation  
The proposed architecture aims to detect survivors of 

natural disaster, and speedy localization of the victims is the 
essential motivation of the overall framework. The present 
drone incorporates built-in IMU, lidar, and IR depth camera to 
perform the localization and mapping task. When the drone is 
deployed into the disaster sites, the lidar provides 2D map of 
surrounding structures. This global map guides the maneuver 
of the quadrotor by displaying possible flight path and open 
entrances. The robot then utilizes depth camera to visualize 
local 3D view. The stereoscopic infrared camera is employed 
to detect the survivors even in the dark. With the support of 
IMU, the flying robot achieves the global and local mapping of 

disaster scenes. In addition, a 360 camera is used to gather 
visual information from surrounding environment. This sensor 
works with virtual reality and/or teleoperation for rescue center 
to manually control the robot. Fig.4 exemplifies the 
visualization of the 360 camera through smartphone connection.
To sum up, the overall sensor setup is able to construct global 
and local maps via the quadrotor flight at disaster environments 
and find the victims of natural disaster from unknown building 
structures with limited lighting condition.   

IV. EXPERIMENT

 Using the aforementioned hardware architecture, we tested 
the drone system in a confined space. The experiments were 
performed in bright and dark setting of the same space for 
comparison purposes.  

 Fig.5 presents the experimental results with the light on. As 
the setup, the IR depth camera outputs and the lidar data were 
processed and visualized in ROS (Robot Operating System) 
with RVIZ package. Configuration for data visualization is 
shown in Fig.5 (F), which is equivalent for the two cases of 
bright and dark environments.  

Figure 4. Samsung Gear 360 paired up with a smartphone.
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Figure 3. Drone hardware specification. Manifold, marked in red, plays a role in main computer for the drone, and various sensors, marked in green, collect 
information from surrounding environment.
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 Fig.5 (A) and Fig.5 (B) show the monocular RGB and 
grayscale images from Intel RealSense camera. In the bright 
setting, it is obvious to point out that there exists an object 
laying on the ground. If the object moves at disaster sites, we 
consider that the object becomes a candidate for the 
survivors of natural disaster. The left and right infrared 
images are illustrated in Fig.5 (C) and Fig.5 (D), respectively. 
These stereoscopic images also confirm the presence of the 
object on the ground.  

 The benefit of activating RVIZ package is the user-
friendly customization for data visualization (Fig.5 (F)). For 
each window opened by RVIZ, users can modify the style 
and color of the data view, and Fig.5 (E) exemplifies such 
benefit. The laser scanner sensor returns the yellow point 
cloud data on a grid map where each grid has a dimension of 
1 meter by 1 meter. Therefore, we conclude that the confined 
space approximately has a dimension of 6 meters by 7 meters. 

 Fig.6 displays the node graph for the sensor system. A 
topic marked by an ellipse represents one node and performs 
specific task. For instance, /camera/depth_points node works 
with depth points captured by camera. The graph also 
demonstrates that there are two nodes (/camera/driver and 
/camera/camera_nodelet_manager) communicating with 
each other by transferring messages. The collection of nodes 
is marked by rectangle and represent distinct sensor data 
outputs. hokuyo_node provides lidar data through one node, 
and camera includes 16 nodes related to the depth camera. 
This network allows users to modify desired data by 
executing the node on demand and fuse the sensor data from 
different sensors.  

 For the next phase of the experiment, Fig. 7 illustrates the 

Figure 6. Node graph for the sensor architecture. The rqt_graph package in 
ROS provides a GUI for visualizing the ROS nodes and topics. The lidar data 
is collected by hokuyo_node, and the depth camera outputs are stored in 
camera. The presence of lidar and depth camera nodes indicates that both data 
outputs are accessible and can be fused if necessary.

(A) (B) (C)

(D)
(E)(F)

Figure 5. Experimental result from our hardware architecture. The data output is collected from a laser scanner and a depth camera. The visualization is
implemented in ROS (Robot Operating System) with RVIZ package. (A) RGB image. (B) Grayscale image. (C) Left infrared sensor image. (D) Right 
infrared sensor image. (E) Laser scanner point cloud data. (F) Configuration for sensor data visualization.
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results in the limited lighting condition. Fig.7 (A) and Fig.7 (B) 
outputs confirm that nothing can be seen with the RGB camera. 
However, Fig.7 (D) and Fig.7 (E) show that infrared images 
are insensitive to the lighting because the object still can be 
found in the dark environment. We also observe that the lidar 
data in yellow point cloud looks the same as before and 
conclude that laser scanner sensor helps users perceive the 
unknown space by providing the point cloud for the boundary 
of surrounding structures. Fig.7 (C) describes the real world 
scene of the selected region and validates the entrance location 
found by lidar. Finally, an example of our drone flight is shown 

in Fig.8. The quadrotor was manually controlled and flying 
through a basement room with the limited lighting condition. 

V. CONCLUSION AND FUTURE WORK

In this paper, we discuss overall architecture for drone-
assisted disaster management and propose the suitable drone 
hardware with sensors for practical rescue operation. We test 
our system in the lighted and limited lighting conditions, and 
the sensor outputs visualized by ROS provide the global and 
local maps of surrounding unknown environments. We also 
identify that laser scanner sensor and depth camera are 
insensitive to illumination change and thus can be fused 
together to offer meaningful information at natural disaster 
sites. Successful usage of these sensors enables rescuers to 
detect significant landmarks such as doors or boundary walls 
and find survivors from the disaster at the earliest time.  

The future work will focus on building a fully autonomous 
drone that can perform sensing, localization, and trajectory 
planning on its own. Moreover, sensor fusion of laser scanner 
and infrared depth camera will be conducted at the lower level 
in order to provide more accurate mapping information for 
robot navigation. The autonomous navigation requires path 
planning algorithms and well-designed controller, and the 
collective system considering these features will benefit 
practical rescue operation and save a life. 
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Figure 7. Drone Experimental result in the limited lighting condition. The data output is collected from a laser scanner and a depth camera and visualized in 
RVIZ with the previously used configuration. (A) RGB image. (B) Grayscale image. (C) Real world view of the selected region. (D) Left infrared sensor 
image. (E) Right infrared sensor image.

Figure 8. Testing of our drone. The quadrotor is manually controlled and 
flying in a basement room with the limited lighting condition.

88



REFERENCES

[1] R.R. Murphy and S. Stover. “Rescue robots for mudslides: a descriptive 
study of the 2005 La Conchita mudslide response,” Journal of Field 
Robotics 25.1-2 (2008): 3-16. 

[2] G.M. Kruijff, et al. “Rescue robots at earthquake-hit Mirandola, Italy: a 
Field Report,” IEEE International Symposium on Safety, Security, and 
Rescue Robotics (SSRR), 2012. 

[3] N. Michael, et al. “Collaborative mapping of an earthquake damaged 
building via ground and aerial robots,” Field and Service Robotics. 
Springer Berlin Heidelberg, 2014. 

[4] Y. Ham, K.K. Han, J.J. Lin, and M. Golparvar-Fard. “Visual monitoring 
of civil infrastructure systems via camera-equipped unmanned aerial 
vehicles (UAVs): a review of related works." Visualization in 
Engineering 4.1 (2016): 1. 

[5] M. Erdelj and E. Natalizio. “UAV-assisted disaster management: 
applications and open issues,” IEEE International Conference on
Computing, Networking and Communications (ICNC), 2016. 

[6] S. Grzonka, G. Grisetti, and W. Burgard. “Towards a navigation system 
for autonomous indoor flying,” IEEE International Conference on 
Robotics and Automation (ICRA), 2009. 

[7] A. Bachrach, R. He, and N. Roy. “Autonomous flight in unstructured 
and unknown indoor environments,” in Proceedings of EMAV, 2009. 

[8] J. Engel, J. Sturm, and D. Cremers. “Camera-based navigation of a low-
cost quadrocopter,” IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), 2012 

[9] J. Engel, J. Sturm, and D. Cremers. “Scale-aware navigation of a low-
cost quadrocopter with a monocular camera,” Robotics and Autonomous 
Systems, 2014. 

[10] K. Hausman, S. Weiss, R. Brockers, L. Matthies, and G.S. Sukhatme. 
“Self-calibrating multi-sensor fusion with probabilistic measurement 
validation for seamless sensor switching on a UAV,” IEEE International 
Conference on Robotics and Automation (ICRA), 2016. 

[11] S. Saeedi, A. Nagaty, C. Thibault, M. Trentini, and H. Li. “3D mapping 
and navigation for autonomous quadrotor aircraft,” IEEE 29th Canadian 
Conference on Electrical and Computer Engineering (CCECE), 2016. 

[12] J. Liénard, A. Vogs, D. Gatziolis, N. Strigul. “Embedded, real-time 
UAV control for improved, image-based 3D scene reconstruction,” 
Measurement 81 (2016): 264-269. 

[13] Y. Ling, T. Liu, and S. Shen. “Aggressive quadrotor flight using dense 
visual-inertial fusion,” IEEE International Conference on Robotics and 
Automation (ICRA), 2016. 

[14] J. Chen, T. Liu, and S. Shen. “Online generation of collision-free 
trajectories for quadrotor flight in unknown cluttered environments,”
IEEE International Conference on Robotics and Automation (ICRA), 
2016. 

[15] E. López, et al. “Indoor SLAM for micro aerial vehicles using visual and 
laser sensor fusion,” Springer International Publishing, 2016 [Robot 
2015: Second Iberian Robotics Conference, pp. 531-542, 2015]. 

[16] M. Saska, et al. “System for deployment of groups of unmanned micro 
aerial vehicles in GPS-denied environments using onboard visual 
relative localization,” Autonomous Robots (2016): 1-26. 

[17] M. Michael, B. Horan, and M. Joordens. “Kinect with ROS, interact 
with oculus: towards dynamic user interfaces for robotic teleoperation,” 
IEEE 11th Annual System of Systems Engineering Conference (SoSE), 
2016. 

89


