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Abstract—Over the last few decades, the use of 
electroencephalography (EEG) signals for motor imagery 
based brain-computer interface (MI-BCI) has gained 
widespread attention. Deep learning have also gained 
widespread attention and used in various application such as 
natural language  processing, computer vision and speech 
processing. However, deep learning has been rarely used for 
MI EEG signal classification. In this paper, we present a deep 
learning approach for classification of MI-BCI that uses 
adaptive method to determine the threshold. The widely used 
common spatial pattern (CSP) method is used to extract the 
variance based CSP features, which is then fed to the deep 
neural network for classification. Use of deep neural network 
(DNN) has been extensively explored for MI-BCI classification 
and the best framework obtained is presented. The 
effectiveness of the proposed framework has been evaluated 
using dataset IVa of the BCI Competition III. It is found that 
the proposed framework outperforms all other competing 
methods in terms of reducing the maximum error. The 
framework can be used for developing BCI systems using 
wearable devices as it is computationally less expensive and 
more reliable compared to the best competing methods.   

Keywords—brain-computer interface (BCI); common spatial 
pattern (CSP); deep neural network (DNN); 
electroencaphalography (EEG), motor imagery (MI). 

I.  INTRODUCTION 
In recent years, the use of brain signals have been 

extensively explored for various applications with major 
focus to the field of biomedical engineering [1-4].  A BCI 
system, also referred to as brain-machine interaction, 
bridges the gap between humans and computers by 
translating thoughts into commands, which can be used to 
communicate with the external devices [5-8] or used for 
disease diagnosis [3, 9, 10]. A BCI system could be 
beneficial in restoring valuable functions of severely disable 
people. In BCI systems based on EEG techniques, usually 
noninvasive sensors are placed on the scalp of the user for 
detecting the changes in the electrical potentials that are 
originated by the neurons. Due to low cost and portability, 
EEG is traditionally used in comparison with other 

noninvasive methods such as magneto-encephalography 
(MEG), position emission tomography (PET), and 
functional magnetic resonance imaging (fMRI) systems. 
Use of EEG is also preferred over invasive method such as 
electrocorticography (ECoG) as the later requires a brain 
surgery for setting up the montage.  

The major challenge in the classification of MI EEG 
signals arises due to the fact that the brain signals that are 
recorded are very small in amplitude. Therefore, events such 
as eye blink, eye movement, muscular movements, teeth 
grinding and heart rhythm interfere with the EEG signal 
resulting in a signal having low signal to noise ratio (SNR). 
This prevents the decoding system to correctly decode the 
user thoughts. Various techniques have been proposed by 
the scientific community aiming to improve the temporal 
filtering methods [11, 12], spatial filtering [13-15], feature 
extraction [16, 17] and feature selection [18-21] techniques, 
dimensionality reduction techniques [22-24] and 
classification algorithms [25-28]. Several feature extraction 
techniques such as power spectral density (PSD), common 
spatial pattern (CSP) [29, 30], statistical features, self-
organizing maps (SOM), correlation, spectral coherence 
[31] and information entropy [17, 32] have been studied. 
Classifiers such as support vector machine (SVM) [26, 33], 
k-nearest neighbors (KNN) [34-36], random forest (RF) 
[37], etc. have been explored for classification of MI-EEG 
signals.  

Although a vast range of studies on a number of 
different aspects of the MI based BCI's have been carried 
out, the detection and modeling of brain signals using 
artificial intelligence and machine learning techniques 
remains a big challenge and many open research questions 
still exists. Deep learning techniques have also increasingly 
gained attention in the field of machine learning and 
artificial intelligence. It has been widely explored and used 
as solutions for engineering problems such as speech 
recognition [38, 39], computer vision [40, 41] and natural 
language processing [42]. However, the use of deep learning 
techniques has not been widely explored for MI based BCI 
systems. Only a number of studies has been carried out to 
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explore the use of deep learning techniques for EEG signal 
classification [43-46].  

In this paper, we explore the use of deep learning 
techniques for MI-EEG signal classification. Several 
frameworks have been evaluated and the framework that 
performed well in comparison with other competing 
methods is presented in detail. The rest of the paper is 
organized as follows. Section II briefly discusses some of 
the research work that has been carried out in the related 
field. The description of the dataset used and the proposed 
framework is described in Section III. In section IV, the 
proposed framework is evaluated and compared with other 
competing methods while section V highlights the important 
findings of this paper and makes some future insights. 

II. RELATED WORKS 
A BCI system could be beneficial in restoring valuable 

functions of severely disabled people, used for 
detection/diagnosis of disease such as seizure detection and 
used for entertainment. Filter band selection, optimizing 
spatial filters, feature extraction and classification 
algorithms have been widely explored to develop improved 
BCI systems. BCI systems such as wheelchair controllers 
[6, 47], word speller programs [48] and automatic emotion 
recognition systems [49, 50] have been successfully studied 
and developed. A BCI system bridges the gap between 
human and machines interactions by controlling external 
devices via thought without any muscle activity. 

The conventional CSP method employs a single fixed 
filter bank with CSP variance based features and obtained 
promising results. CSP has been widely used for EEG signal 
classification. A common spatio-spectral pattern (CSSP) 
[51] framework has been proposed that enhances the 
performance of the conventional CSP. In CSSP, CSP is 
applied to the signals combined with its time delayed 
signals to obtain the finite impulse response filter (FIR) 
coefficients. Different spectral patterns are computed for 
each channel in the CSSP framework. 

 In [30], a sub-band common spatial pattern (SBCSP) 
method is presented (refer Fig. 1) in which the authors have 
expanded the method of conventional CSP. The raw 
multichannel EEG signal is decomposed into multiple 
frequency bands called sub-bands.  The CSP variance based 
features are then extracted for each of the sub-bands and 
linear discriminant analysis (LDA) is performed on each of 
the feature sets of the different sub-bands in order to reduce 
the dimensionality of the feature sets. They have applied the 
method to two class problem, therefore one dimension 
feature set is obtained for each set of sub-band on which 
LDA is performed. Finally, the set of features are fused 
together and a SVM is used for classification. This SBCSP 
method performed better than the conventional CSP 
approach. 

As the number of features increases, the possibility to 
have redundant features also increases and sometimes the 
overall performance reduces. This is the case in SBCSP and 
to tackle this problem, a filter bank CSP (FBCSP) [29] 
method has been proposed. The FBCSP method is similar to 

SBCSP, however, after performing CSP on the sub-bands, 
instead of performing LDA, the CSP features of the sub-
bands are combined and feature selection have been 
performed. The authors in this method evaluated various 
feature selection methods and classifiers. The FBCSP 
method performed better than the conventional CSP and 
SBCSP. 

 

Fig. 1. The framework for SBCSP [30] method. 

The use of nine sub-bands increases the computational 
burden of the SBCSP and FBCSP methods. To overcome 
this issue, a discriminative filter band CSP (DFBCSP) has 
been proposed in [11]. In DFBCSP, Fisher's ratio of the 
spectral power of channel C3 or C4 is used to determine the 
four most discriminating frequency bands from a set of 12 
frequency bands. CSP is then performed on each of the 
selected 4 sub-bands separately and the variance based CSP 
features are extracted. The features from all bands are 
combined and fed to a SVM classifier. The DFBCSP 
method thus reduces the computational burden of the 
SBCSP and FBCSP frameworks as only 4 sub-bands are 
used compared to that of 9 used by SBCSP and FBCSP. It 
also outperforms all the other methods achieving the highest 
classification accuracy. 

A few researchers have also focused on employing deep 
learning for EEG signal classification. In [44], a deep belief 
network (DBN) is employed for classification of emotions 
using EEG signals. Differential entropy features are 
extracted from multichannel EEG signals and used for 
training the deep belief network. A hidden markov model 
(HMM) is also integrated to the output of the DBN in order 
to capture a reliable emotional stage switching with higher 
accuracy. The DBN method performed better in comparison 
with the state-of-the-art methods. A deep learning method 
for classification of EEG data based on motor imagery have 
been presented in [52]. The authors employed the method 
for EEG based left and right hand motor imagery tasks. 
They firstly trained a weak classifier by DBN using certain 
single channel data and then combined the trained weak 
classifiers using the AdaBoost algorithm. A number of 
restricted Boltzmann machines (RBM) were stacked on top 
of each other to form the DBN structure. Contrastive 
divergence (CD) algorithm was used for training the DBN 
network. The authors reported that better performance was 
obtained using 8 hidden layers with improvement of 4-6% 
in certain cases in comparison with SVM.  

In [53], a new deep learning scheme based on RBM is 
presented. Wavelet packet decomposition (WPD) and fast 
Fourier transform (FFT) were employed for obtaining the 
frequency domain representation of the EEG signals. These 
were used to train 3 RBMs and then a softmax regression 
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output layer was stacked forming a four-layer network. This 
is known as frequential deep belief network (FDBN). The 
FDBN was fine tuned using conjugate gradient and back-
propagation methods. The FDBN was evaluated using 
public benchmark datasets and significant performance 
improvement have been shown compared to the state-of-the-
art methods. 

In this paper, we propose a novel deep learning method 
that accepts CSP features as inputs. Only a single filter band 
is employed for filtering the raw EEG signal in order to 
keep the computational complexity of the system to a 
minimum. 

III. METHODOLOGY 

A. EEG Data Description 
The public benchmark Dataset IVa from BCI 

competition III provided by Fraunhofer FIRST (intelligent 
data analysis group) have been used [54, 55] to evaluate the 
performance of the proposed CSP based DNN (CSP-DNN) 
framework and referred to as dataset from here onwards. 
The dataset consists of motor imagery EEG signals for right 
hand and left foot recorded from five subjects using 118 
channels. The five subjects are referred to as aa, al, av, aw 
and ay. The down sampled signals of 100 Hz have been 
used. The dataset contains 280 trials (140 for each class) for 
each subject. More details of the dataset can be obtained at 
the web-link: http://www.bbci.de/competition/iii/. 

B. The proposed CSP based DNN framework  
The block diagram of the proposed CSP-DNN 

framework is shown in Fig. 2. The raw EEG data is first 
filtered by bandpass filter. Spatial filtering using CSP is 
then performed on the bandpass filtered data and the CSP 
variance based features are extracted. The DNN is then 
trained using the extracted features and the trained DNN is 
used to classify the test data. The following sections explain 
the different stages of the proposed CSP-DNN framework in 
detail.  

 

Fig. 2. Framework of the proposed CSP-DNN framework. 

C. CSP feature extraction 
CSP have been widely used in MI-BCI systems for 

projecting the data to a new time series that has maximum 
discrimination between the different MI tasks. Consider the 
two class problem having EEG samples Xn,i 

TCR  x ∈ , where n 
denotes the n-th trial of i-th class (i∈{1,2}), C is the number 
of channels and T is the number of sample points. Each trial 

data is spatially filtered using (1), WCSP is the spatial filter, 
and Zn,i is the spatially projected data. The CSP variance 
based features are then extracted from each trial using (2), 
where fi is the i-th feature, and var(Zm) denotes the variance 
of the m-th row of Z. The features fi are then combined to 
form the feature vector of each trial. Each trial feature 
vector of the train data is stacked together to form the train 
feature matrix. The test feature matrix is obtained in the 
same way. These feature matrices are used for training and 
testing of the DNN. A detailed explanation of CSP 
algorithm can be found in [56]. 
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D. The proposed DNN structure 
Deep learning techniques are widely used in speech, 

image, signal, video, and text mining and recognition, and 
are breaking the records by improving state of the art 
accuracies. Recently remarkable improvements have been 
made by deep learning techniques in the tasks of 
classification and representation learning. In this work, we 
employed a 4-layer DNN comprising of the input layer, 2 
hidden layers, and an output layer as shown in Fig. 3.  

 

Fig. 3. The DNN structure that has been adopted (source: MATLAB) 

The 4 dimensional CSP feature vector forms the input to 
the DNN. The two hidden layers are the encoders having 10 
and 3 nodes respectively while the final layer is the softmax 
layer with 2 nodes (this structure was selected from many 
other structures as discussed in Section IV). The auto 
encoders are used to learn features in an unsupervised way. 
The input of the first encoder is the 4 dimensional feature 
vectors and the output is the same. Thus, the 10 hidden 
nodes after training produces 10 new learned features. An 
auto encoder comprises of an encoder and a decoder. The 
encoder learns the features while the decoder maps the 
learned features back to the input.  These learned features 
are fed to the second encoder which learns 3 new features 
(same as the number of nodes) in a similar manner. No 
scaling of data has been done and logistic sigmoid function 
and pure line transfer function have been used for the 
encoder and decoder, respectively. The mean squared error 
is used as the loss function to evaluate the performance 
during the training process. The softmax layer is used for 
classification and scaled conjugate gradient descent 
algorithm has been used for training the softmax layer. 
Cross-entropy has been used as the loss function. The 
softmax layer uses the actual target class during training and 
thus is a supervised technique. All algorithms were 
implemented using MATLAB.  
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Fig. 4. Box plot showing the average 10x10-fold cross validation errors for different methods using public benchmark dataset IVa of BCI Competition III. 

IV. RESULTS AND DISCUSSIONS 
A number of experiments have been carried out to obtain 

the CSP-DNN framework that gives promising results. Four 
different frameworks were evaluated in this work. In the 
first framework, the bandpass filtered raw EEG data was 
directly used to train the DNN with two hidden layers. In 
the second framework, the bandpass filtered raw data was 
spatially filtered using CSP spatial filter and the spatially 
projected data was used as the input to the DNN. In the third 
framework, the bandpass filtered raw EEG data was directly 
used to learn a lower dimension data in an unsupervised 
way using auto encoders. The lower dimensional data were 
then spatially filtered using the CSP spatial filter and the 
spatially filtered data was then used to learn another DNN. 
All these frameworks did not perform well compared to the 
state-of-the-art methods and were not adopted. The fourth 
framework is the proposed CSP-DNN that has been 
presented in Section III.  

Experiments were conducted using several different 
node configurations and the configuration that gave 
promising results has been adopted. In the conventional 
CSP method, a single wide bandpass filter is used. While 
this keeps the computational complexity of the system low 
and produced promising results, other state of the art 
methods such as FBCSP and DFBCSP performed better at 
the expense of increased computational complexity 
employing multiple filter banks in conjunction with either 
feature selection or band selection algorithms. The aim of 
this research work was to develop a BCI system that can 
compete with the state-of-the-art methods and is 
computationally less expensive. Therefore, we have 
employed a single filter bank. However, instead of using a 
fixed bandpass filter as used in conventional CSP, we tuned 
the filters using 10-fold cross validation method. 

In the CSP algorithm, the spatial filter WCSP is made by 
selecting the first and last m columns of the CSP projection 

matrix. In this work m = 2 have been used. Other values of 
m were also evaluated, however, using m = 2 produced the 
desirable results. Thus, for each trial a 4 (2m) dimensional 
feature vector is obtained. The features of the training set 
were used to train the DNN and the features from the test set 
were then classified using the trained weights of DNN. The 
DNN structure has been adopted after a series of 
experiments in which different number of nodes in each of 
the hidden layers (encoders) were tested. Using 10 nodes for 
the first encoder and 3 nodes for the second encoder gave 
optimal results and thus have been adopted. The 
effectiveness of the proposed CSP-DNN framework has 
been evaluated using 10x10 fold cross validation method 
and the results obtained are shown in Fig. 4. The CSP-DNN 
framework has been tested with two different settings. In the 
first setting (CSP-DNN1), a threshold of 0.50 has been used 
for classification whereas for the second setting (CSP-
DNN2) an adaptive method was used for selecting the 
threshold parameter. Ten-fold cross validation was 
performed on the training data to select the best threshold 
value and later used to classify the test data. It has been 
noted that using the adaptive method of selecting the 
threshold resulted in an improvement in both the average 
mean error and maximum error.  

Overall, the proposed CSP-DNN framework performed 
well and promising results have been obtained. The 
proposed CSP-DNN method has successfully reduced the 
overall maximum error producing a more reliable result. 
Although the DFBCSP method achieved the lowest average 
error, the maximum error is quite high. It can be noted that 
the proposed method also reduced the maximum error for 
subjects ay and av in comparison with other methods.  

In terms of computational complexity, the proposed 
method uses a single filter bank in comparison with FBCSP 
and DFBCSP methods that employ multiple filter banks. 
Thus, employing a single filter bank has reduced the 
computational complexity of the proposed CSP-DNN 
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framework in comparison with the competing methods, 
FBCSP and DFBCSP. Comparing CSP, CSSP and CSP-
DNN framework all methods use a single filter bank, 
however, the CSP-DNN method outperforms both the 
methods. The proposed CSP-DNN framework has 
outperformed all methods except DFBCSP in terms of 
average error. However, it should also be taken into account 
that DFBCSP employs band selection and later uses 4 
selected sub-bands for further processing. Therefore, 
DFBCSP has obtained a lower average error at the expense 
of increased computation cost.  

V. CONCLUSION 
A number of experiments have been conducted on 

several different frameworks with different parameter 
settings and a CSP-DNN framework has been proposed, 
which outperformed the state-of-the-art methods in terms of 
reducing maximum error. The proposed system is more 
reliable as it achieved the lowest maximum error and is 
computationally efficient. Thus the CS-DNN framework is 
well suited to applications such as wearable devices that 
require algorithms that are computationally less expensive 
and can last longer when powered using batteries. 

In this work, we aimed to keep the complexity of the 
system to a minimum and thus employed a single filter 
bank. However, using the CSP-DNN in parallel on multiple 
filter banks and incorporating a majority voting system may 
further enhance the performance of the system, which is left 
as future work. Also, in this work we limited the number of 
hidden layers to 2. Therefore, in future we will carry out 
more research and investigate the impact of increasing the 
number of hidden layers in a quest to obtain an improved 
system further. 
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