

The Need for Quantum-Resistant Cryptography in Classical Computers
Mohammed Farik and Shawkat Ali

{mohammedf, shawkata}@unifiji.ac.fj

Abstract – In this review paper, we present reasons the
current best cryptographic algorithms will fail classical
computer security in post-quantum era. The presented
security gaps outline the need to develop quantum-resistant
cryptographic functions and algorithm for classical
computers, with a few novel recommendations to the effect.
Therefore, we believe this paper will enlighten and generate
interest in post-quantum cryptography research.

Keywords – classical computing, hash, public-key cryptography,
quantum computing, quantum-resistant

I. INTRODUCTION

We live in a connected world and rely heavily on
secure internet services for email, social networking, web
search, cloud computing, e-commerce, and bill payment,
amongst hundreds others [1]. For example, the https
protocol uses 128-bit encryption at Secure Socket Layer
(SSL) to protect web traffic for banking, e-commerce,
email, amongst other services. A look at
http://map.norsecorp.com/#/ website (Fig.1) shows the
extent of cyber-attacks on a global scale [2]. As can be
seen in this live attack map, the 65535 ports that support
various computing services such as email, https amongst
hundreds others are under constant cyber-attack.

Figure 1. Norse Live-Attack Map

Much of the increased attacks can be attributed to the
fact that computers have become increasingly powerful in
terms of speed and capability. Table 1 compares some
types of computers and their processors that are currently
making headlines all over the world. While classical
computers perform as many computations at the same time
as there are cores in its processor, quantum computers
perform as many computations exponentially as there are

quantum bits (qubits) in its processor. Quantum effects
such as superposition of bits 0 or 1; parallelism [3],
entanglement [4], [5], and quantum annealing give D-
Wave X2 quantum computer this enormous capability. For
example, D-Wave X2 quantum computer has a single
processor, but has 1000 qubits that can perform 21000
calculations simultaneously [6]. In comparison, the fastest
supercomputer “Sunway TaihuLight”, has 10,649,600
processor cores capable of performing only as many
computations at the same time [7].

TABLE 1. COMPUTER/PROCESSOR SPEEDS

Systems Processor Core Frequency
Samsung
Galaxy S7
smartphone

8 Core Snapdragon 820, Exynos
8890, 64-bit chipset

2.3+ GHz [8]

Desktop PC Intel Core i7-7Y75 (7th Gen.
Processor)

3.6 GHz [9]

Sunway
TaihuLight
Supercomputer

10,649,600 cores, 1.45GHz 93,014 TFlop/s [7]

D-Wave X2
Quantum
Computer

1 x 1000 qubit CPU 21000 simultaneous
computations [6]

D-Wave’s performance advantage suggest future

quantum computers will be even more powerful and solve
many of the physical world’s currently difficult quantum
mechanical challenges in the areas of artificial
intelligence, machine learning, image recognition,
materials modeling, drug discovery, and search and
optimization faster and better than today’s fastest
supercomputers.

However, the same capability of quantum computers
will open up the Pandora’s Box in the face of classical
computer cryptography. Cryptography is by far the best
technique implemented to protect information for
confidentiality and integrity in classical computers.
Modern cryptography makes use of mathematical theory
and computer science practice when designing
computational algorithms. Any chosen algorithm should
be computationally secure, meaning computationally
difficult to break in practice by any attacker. Many
cryptographic protocols are based on the difficulty of
factoring large composite integers, prime numbers, or a
related problem. With the presence of quantum computers
such as D-Wave and personal quantum computers (PQCs)
in the attack vector in the near future, there is threat that
our current cryptographic defenses will not be able to
provide adequate security.

Accordingly, this review paper intends to discuss the
gaps that exist in hash, encryption, digital signature, and
key exchange algorithms for post-quantum use in classical

————————————————
� Mohammed Farik is a PhD candidate and a Lecturer in Information

Technology at The University of Fiji. E-mail: mohammedf@unifiji.ac.fj
� Shawkat Ali is a Professor in Information Technology at The University

of Fiji. E-mail: neerajs@unifiji.ac.fj

2016 3rd Asia-Pacific World Congress on Computer Science and Engineering

978-1-5090-5753-5/16 $31.00 © 2016 IEEE

DOI 10.1109/APWC.on.CSE.2016.25

98

computers and make recommendations for improvements
as per NIST’s Post-Quantum Crypto Project [10].

In the following Sections, Section II explains
foundation of current cryptographic algorithms. Section III
addresses the security gaps that open up in classical
computers due to emergence quantum computers. Section
IV sketches some recommendations as solutions and
finally Conclusions in Section V.

II. CLASSICAL COMPUTING CRYPTOGRAPHIC ALGORITHMS

Currently, the best way to ensure security in all digital
infrastructure such as network hardware, communication
protocols, and software is by implementing cryptographic
functionalities such as encryption, hash functions, digital
signature, and key exchange [10],[11]. This Section
discusses three classes of cryptographic algorithms –
namely, hash functions, symmetric-key algorithms and
asymmetric-key algorithms, and the mathematical basis
for their acceptance.

A. Mathematical Basis
The strength of all cryptographic algorithms is based

on difficult mathematical problems that generate codes
which unauthorized people will not be able to easily break.
Today, in classical computers, the mathematical theory of
Integer factorization is used to strengthen public-key
cryptography systems because it is computationally
difficult to factorize large integer in classical computers,
particularly if the integer is a product of two 300-digit
(2400-bit) prime numbers.

B. Cryptographic Hash Function
Cryptographic hash function uses a mathematical

algorithm that converts a message (input) of any length to
a hash value (digest) string of fixed bit-size in a one-way
operation (Fig.2) that is impossible to reverse [12], [13]. It
is used in information security applications such as digital
signatures, message authentication codes (MACs), data
indexing in hash table, in fingerprinting, and as checksums
[13].

Figure 2. Use of Cryptographic hash function [13]

A perfect cryptographic hash function has four
characteristics. One, it should be quick in calculating the
digest from the input. Two, the digest cannot be used to
get back the original input. The only way to get the input
is by attempting a brute-force search of possible inputs to
derive a match. Three, any change in input changes the
message so severely that the new digest will be in no way
correlated to the old. Fourth, it is impossible to find two
different inputs derive the same digest [13].

A cryptographic hash function should resist all known
cryptanalytic attacks such as pre-image attack, second-pre-
image attack, and collision attack.

Pre-image resistant hash function is one where for a
computed digest h it is difficult to find any input (m) such
that h=hash(m). If it is not difficult, then hash function is
vulnerable to pre-image attack [13].

Second pre-image resistant hash function is one that
when given an input m1, it is difficult to find different
input m2 such that hash(m1)=hash(m2). If it is not difficult,
then hash function is vulnerable to second pre-image
attack [13].

Collision resistant hash function is one where it is
difficult to find two different inputs m1 and m2 such that
hash(m1)=hash(m2). For collision resistance, hash value
should be twice as long as those required in second-pre-
image resistance attacks. If it is not long enough, birthday
attacks will find collisions [13], [14].

Secure hash algorithms (SHAs) are specified in
FIPS180-4 [14] and FIPS202 [15] as recommended hash
functions. Table 2 shows the security strength of SHA-1,
SHA-2, and SHA-3 functions in classical computing [14],
[15].

TABLE 2. SECURITY STRENGTHS OF SHA-1, SHA-2, AND SHA-3
FUNCTIONS [15]

For a message that is less than 264-bits, SHA-1, SHA-
224 and SHA- 256 hash algorithm is applied. For a
message less than 2128-bits, SHA-384, SHA512, SHA-
512/224 and SHA-512/256 hash algorithm is applied.
SHA-3, the most recent hash algorithm was released by
NIST in 2015 as FIPS202 [14], [15]. SHA-3 is a family of
four cryptographic hash functions (SHA3-224, SHA3-256,
SHA3-384, and SHA3-512) and two extendable-output

99

functions (XOFs), namely SHAKE128 and SHAKE 256
[15].

These SHAs are also built-in as part of many other
cryptographic algorithms such as digital signature
algorithms as detailed in FIPS186-4 [16], keyed-hash
message authentication codes (HMAC) as detailed in
FIPS198-1 [17], and in the generation of random number
bits [14].

Some popular cryptographic hash functions such as
HMAC are susceptible to length-extension attacks. If
given hash(m) and len(m) but not m, an attacker can chose
an appropriate m’ to concatenate and calculate hash(m||m’)
[13].

C. Symmetric-Key Algorithms versus Asymmetric Key
Algorithms
Symmetric-Key algorithms are also known as secret-

key algorithms as they use the same key for both
encryption and decryption purposes (Fig.3).

Figure 3. Symmetric key encryption [18]

Here, Alice can encrypt and send a message to Bob to

decrypt Bob can encrypts and send a message for Alice to
decrypt, using the same shared key. Symmetric key
algorithms provide four functionalities. One, they can
provide data confidentiality (privacy). Two, it can generate
and validate a message authentication code (MAC). Three,
it is used key-establishment process. Four, it can generate
deterministic random numbers [12]. Currently, the
strongest and recommended Symmetric key algorithm for
encryption and decryption purposes is Advanced
Encryption Standard (AES) [12].

Asymmetric-key algorithms, also known as public-
key algorithms, use a pair of keys – private-key and
public-key, for encryption and decryption purposes (Fig.
4). Procedures include [19]:

(a) Deciphering enciphered message M yields M, as
D(E(M) = M.

(b) It is easy to compute both D and E.
(c) Even by publically revealing E, public cannot

find any easy way to compute D efficiently.
(d) If the message M is first deciphered and then

enciphered, M is the result, as
E(D(M) = M.

In Fig. 4, for Alice to receive an encrypted message
from Bob that she can understand, Alice has to give her
public-key – EA to Bob. Bob will encrypt the plain text

message using Alice’s public key – EA(M) and send to
Alice. Alice will have to decrypt the message using her
private-key – DA(EA(M)) to get the plain text message – M.
Asymmetric-key algorithms can be used to compute
digital signatures, and to establish cryptographic keys [12].

Figure 4. Asymmetric key encryption [18]

D. Advanced Encryption Standard (AES)
FIPS-197 discusses AES algorithm in detail [20]. In

brief, AES uses sequences of 128 bits for input and output.
Block length = 128 bits, 0 ≤ n ≤ 16. Its cipher key contains
128, 192 or the strongest 256-bit sequence [20]. AES-256
makes 14 repetitions of transformation rounds in the
matrix that convert plaintext (input) into cipher text
(output), and vise-versa which are detailed by FIPS-197
[20] and ISO/IEC 18033-3 [21].

Further, AES performs polynomial calculations on
input bytes that are represented as finite field elements as
[20]:

E. Digital Signatures
A digital signature detects unauthorized modifications

to data (integrity), authenticates identity of the signatory,
and proves to a third-party that signature was generated the
claimed signatory (non-repudiation) [16], [19]. Rivest et.al
explains use of digital signature in the following example
[19].

For Bob to send Alice a signed message M in a
public-key cryptosystem, he first has to compute his
signature S for the message M using DB, such that:

 S = DB(M).

Bob then encrypts S using EA (for privacy), and sends
the result EA(S) to Alice. He does not need to send M
because can be computed from S.

Alice has to first decrypt the cipher-text with DA to
obtain S. She presumes the sender is Bob, so she extracts
the message with the encryption procedure of the sender,
in this case EB such that:

 M = EB(S)

100

Alice now possesses a message-signature pair (M, S)
that has properties similar to those of a signed paper
document. Hence, Bob cannot deny having sent Alice this
message, because Alice could not have created S= DB(M).

So, Alice can convince a judge that EB(S) = M, as she
has proof that Bob signed the document.

Also, Alice cannot modify M to a different version
M’, as to do that she will also have to create the
corresponding signature S’ = DB(M’).

Therefore, Alice has received a message signed by
Bob, which she can prove that Bob has sent, but which she
cannot modify [19].

FP186-4 details algorithms and methods for
generating, verifying, and validating digital signature.
FIPS186-4 approved the use of three algorithms for digital
signature generation, verification, and validation purposes
– Digital Signature Algorithm (DSA), Rivest-Shamir-
Adleman (RSA), and The Elliptic Curve Digital Signature
Algorithm (ECDSA) [16]. Fig. 5 shows that digital
signature algorithms also rely on built in hash algorithms
to determine data lengths for digital signature computation
[12].

Figure 5. Hash use in Digital Signature Process [16]

F. Digital Signature Algorithm (DSA)
DSA technical specifications such as criteria for the

generation of domain parameters, for the generation of
public and private key pairs, and for the generation and
verification of digital signatures are detailed in FIPS186-4
[16]. DSA key sizes mentioned are 1024, 2048, and 3072
bits while the output digital signatures are of 320, 448, or
512 bits [12].

G. Rivest-Shamir-Adleman (RSA)
Authors Rivest, Shamir, and Adleman detail the RSA

algorithm in their 1978 paper, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems” [19].

RSA encryption (E) and decryption (D) algorithms are
mathematically as [19]:

C ≡ E(M) ≡ Me (mod n), for a message M.
D(C) ≡ Cd (mod n), for a ciphertext C.

RSA encryption key is a pair of positive integers (e,
n), and decryption key is a pair of positive integers (d, n)
[19]. The first step is to compute n as the product of two
very large random prime numbers p, and q, such that:

n = p · q.

Although n will be made public, the factors p and q
can be unknown to public due to the great difficulty in
factoring n. Hence, this also hides the way d can be
derived from e [12], [19], [22].

In the second step, d, a large random prime number
that is relative to (p – 1) · (q – 1), or greater than max(p,q)
is picked that satisfies [19]:

gcd(d, (p – 1) · (q – 1)) = 1
(gcd means greatest common divisor). It is important that
d is substantially large so that a cryptanalyst cannot find it
easily by direct search [19].

Finally, the integer e is computed from p, q, and d as
the multiplicative inverse of d, modulo (p – 1) · (q – 1),
such that [19]:

e · d ≡ 1 (mod (p – 1) · (q – 1)).

Computing Me (mod n) requires at most 2·log2 (e)
multiplications and 2· log2(e) divisions using a procedure
called “exponentiation by repeated squaring and
multiplication” [19].

Basically, RSA initially required each user to
privately choose two very large (100-digit) random
numbers p and q, so that upon computation n yields at
least a 200-digit integer. It would be better, if the two
numbers selected are not close to each other. So, the
numbers should be so large that it is not computationally
practical for anyone to factor n = p · q, to crack the key
[19]. Rivest et.al knew from the beginning that factoring n
would enable attackers to break RSA. They knew
Pollard’s algorithm could factor a number n in O(n1/4)
time, and an algorithm by Schroeppel could factor n in
even faster time [19].

RSA was adopted by NIST as ANS.X9.31 and later as
PKCS#1. Both of these standards approved in FIPS186-4,
subject to some additional requirements [16]. FIPS-186-4
specifies methods for generating RSA key pairs for several
key sizes for ANSX9.31 and PKCS#1 implementations.
RSA cipher uses only one round of operation and 1024
bits to 4096 bits key sizes [16].

H. Elliptic Curve Digital Signature Algorithm (ECDSA)
ECDSA is detailed in ANS X9.62, and is approved by
FIPS186-4 with some additional requirements [16].
ECDSA produces digital signatures that are twice the
length of the 160 bits key size [16].

I. Key Establishment, Agreement and Establishment
Schemes

Key-establishment schemes are used to set up keys to be
used between communicating parties. There are two types
of key-establishment schemes - key transport and key
agreement. Best key establishment schemes that use
public-key algorithms are adopted in SP800-56 [23] from
ANSX9.42 and ANSX9.63. ANSX9.42 details key
agreement schemes and ANSX9.63 details both key
agreement and key transport schemes [12].

Discrete Log Key agreement schemes use Finite-Field
calculations. SP800-56 recommends eight key agreement
schemes that are based on the complexity of the discrete

101

logarithm problem and that use finite-field arithmetic for
use [23]. Each scheme uses key pairs depending as per
communication requirements [12], [18].

Discrete Log Key agreement schemes use Elliptic-
Curve calculations. SP800-56 recommends seven key
agreement schemes based on the complexity of the
discrete logarithm problem and that use elliptic-curve
arithmetic for use [18], [23]. Each scheme uses key pairs
depending as per communication requirements [12]. Key
establishment protocols also use key establishment
schemes to specify the steps to establish a key. They also
specify message flow and format. Thus, key establishment
protocols must be carefully designed to prevent leak of
secret information to a threat agent [18]. If given enough
time and computer power to perform certain computations
on the value of the secret or private key in use, then an
attacker may be able to deduce the key from observed
fluctuations using cryptanalysis techniques [12], [18].

Table 3 summarizes the current estimates for the
maximum security strengths that the recommended
symmetric and asymmetric cryptographic algorithms
provide, with keys of a specific length [12]. Column 1
shows estimated maximum security strengths (in bits).
Column 2 shows the symmetric-key algorithms that
provide the security strength indicated in column 1 [12].
Column 3 shows the minimum size of the parameters
associated with the standards that use finite-field
cryptography (FFC). DSA is defined in FIPS186 for
digital signatures and Diffie-Hellman (DH) is defined in
SP800-56A [24]. L is the size of the public key and N is
the size of the private key [12]. Column 4 indicates the
value for k (the size of the modulus n) for algorithms
based on integer-factorization cryptography (IFC). The
predominant algorithm of this type is the RSA algorithm.
RSA detailed in [FIPS186] for digital signatures, and in
[SP800-56B] for key establishment. The value of k is the
key size [12]. Column 5 shows the range of f (the size of n,
where n is the order of the base point G) for algorithms
based on elliptic-curve cryptography (ECC). ECC is
specified for digital signatures in ANSX9.62 and adopted
in FIPS186. For key establishment it is detailed in SP800-
56A. The value of f is the key size [12]. The 192-bit and
256-bit key strengths identified for the FFC and IFC
algorithms (in red) are not recommended because of
interoperability and efficiency problems [12].

TABLE 3. COMPARABLE SECURITY STRENGTH OF BEST SYMMETRIC
KEY AND ASYMMETRIC KEY ALGORITHMS [12]

Security
Strength

Symmetric
key

algorithms

FFC
(DSA, D-H)

IFC
(RSA)

ECC
(ECDSA)

128 AES-128 L = 3072
N = 256

k = 3072 f = 256-383

192 AES-192 L = 7680
N = 384

k = 7680 f = 384-511

256 AES-256 L = 15360
N = 512

k = 15360 f = 512+

III. SECURITY GAPS DUE TO QUANTUM COMPUTING

 Post quantum cryptography concerns are not new, as
Diffie and Hellman pointed these out in their paper –
“New Directions in Cryptography” in 1976 [25]. Peter
Shor’s paper in 1999 titled “Polynomial-time Algorithms
for Prime Factorization and Discrete Logarithms on a
Quantum Computer”, proved that Feynman’s predicted
quantum computer [3], [4], [5] was not very far [26], [27].
In his paper, he showed how randomized algorithms,
factoring of integers and finding discrete logarithms, that
were considered difficult for classical computers, the basis
on which they were selected as cryptosystems, are easily
broken in polynomial-time using a hypothetical quantum
computer [27]. Hence, our current cryptosystems need a
re-look to discover better algorithms for security in order
to protect against cyber-attacks in the quantum computer
era.

Supporting the aforementioned mentioned
foundations is PQCrypto [28], an organization formed in
early 2000’s by Deneiel J. Bernstein and Tanga Lange,
have been encouraging post-quantum cryptography
research and publications. Their website “Post quantum
cryptography” contains numerous latest research
publications on the issue, and they still believe that more
research is required on the issue [28].

According to the NISTIR 8105 report, a “Report on
Post-Quantum Cryptography”, current best and
recommended cryptography algorithms Advanced
Encryption Standard 256 (AES-256), Secure Hash
Algorithm 3 (SHA-256), Secure Hash Algorithm 256
(SHA-256), Rivest Shamir Adleman (RSA), Elliptic Curve
Digital Signature Algorithm (ECDSA), Elliptic-Curve
Diffie–Hellman (ECDH), and Digital Signature Algorithm
(DSA) which uses Finite Field Cryptography will not be
secure for digital communications in post-quantum
computing era [11].

This is because quantum computer by their quantum
mechanical nature can proficiently solve these algorithms
and any other BQP (bounded error, quantum, and
polynomial time) problems (Fig.4) [29].

Figure 4. Problem Theory [29]

For some problems, quantum computers offer a

polynomial speedup. Quantum computers will be able to
solve BQP problems such as factorization and discrete
logarithms operations in super-polynomial speed using

102

Shor’s algorithm. Such an achievement is impossible in
classical computers [30].

Integer factorization means the breakdown of a
composite number into a product of smaller integers. If the
final integers are restricted to prime numbers, the process
is called prime factorization. So in integer factorization
algorithm, given an n-bit integer, computer has to find the
prime factorization. There are no efficient classical integer
factorization algorithms. The general number field sieve

which solves in a time is the fastest known
classical algorithm for integer factorization. The best
upper bound on the classical complexity of factoring is

 [31].
In quantum computer, integer factorization is

performed in super-polynomial speed. Peter Shor’s

quantum algorithm achieves this in time [27].
Shor's factoring algorithm breaks RSA public-key
encryption, while its related quantum algorithms for
discrete logarithms break the DSA and ECDSA digital
signature schemes, and the Diffie-Hellman key-exchange
protocol. There also exists a quantum algorithm which is
faster than Shor's for factoring “semi primes [32]. In the
heart of Shor's factoring algorithm is order finding, which
can be reduced to the Abelian hidden subgroup problem,
and solved using the quantum Fourier transform [30].
Many cryptographic protocols are based on the difficulty
of factoring large composite integers or a related
problem—for example, the RSA problem.

Likewise, in Discrete-log algorithm, when given three
n-bit numbers a, b, and N, where b = as mod N for some s,
finds s. Following Shor, this can be achieved on a quantum
computer in poly(n) time [27]. The fastest known classical
algorithm requires time super-polynomial in n. By similar
techniques to those in [27], quantum computers can solve
the discrete logarithm problem on elliptic curves, thereby
breaking elliptic curve cryptography [33]. The super-
polynomial quantum speedup has also been extended to
the discrete logarithm problem on semi-groups [30], [34].

Likewise, Grover's algorithm in quantum computer
can be applied to break a AES symmetric key algorithm by
brute force in a time of about 2n/2 invocations of its
underlying bits, compared with roughly 2n in the classical
computers [35]. So, symmetric key lengths are in effect
halved, giving AES-256 the same level of security against
an attack using Grover's algorithm that AES-128 has
against brute-force search in classical computers. As of
2013, cryptanalysis attacks such as biclique attack and
related-key attack that are computationally faster than
brute force attack have been published for AES, but none
tested computationally feasible [20], [21]. Grover’s
algorithm can also be used to obtain a quadratic speed-up
over a brute-force search for NP-complete class of
problems.

Current strong asymmetric / public-key cryptographic
systems include RSA (Rivest-Shamir-Adleman) algorithm,
elliptic curve algorithms such as ECDSA (EC-Digital
Signature Algorithm) and ECDH (EC-Diffie-Hellman),

and Finite Field algorithm such as DSA. They use either
integer factorization or discrete log problem as their
mathematical base [11] for digital signature and key
exchange purposes, and hence also insecure for use in
quantum era.

RSA is also based on the factoring problem –
factoring the product of two large prime numbers [19],
[22]. Cryptanalysis technique such general number field
sieves for classical computers and Shor’s algorithm for
quantum computers leaves RSA-based public-key
cryptography in a sorry state of security. As it is, a 768-bit
RSA key has already been broken using cryptanalysis in
classical computers [12], [22].

Elliptic Curve Digital Signature Algorithm (ECDSA)
offers a variant of the Digital Signature Algorithm (DSA)
which uses elliptic curve cryptography. As with elliptic-
curve cryptography in general, the bit size of the public
key believed to be needed for ECDSA is about twice the
size of the security level, in bits. For example, at a security
level of 80 bits (meaning an attacker requires the
equivalent of about 280 operations to find the private key)
the size of an ECDSA public key would be 160 bits,
whereas the size of a DSA public key is at least 1024 bits.
On the other hand, the signature size is the same for both
DSA and ECDSA: 4t bits, where t is the security level
measured in bits, that is, about 320 bits for a security level
of 80 bits [12],[36].

Elliptic Curve Diffie–Hellman (ECDH) is an
anonymous key agreement protocol that allows two
parties, each having an elliptic curve public–private key
pair, to establish a shared secret over an insecure channel.
This shared secret may be directly used as a key, or to
derive another key which can then be used to encrypt
subsequent communications using a symmetric key cipher.
It is a variant of the Diffie-Hellman protocol using elliptic
curve cryptography [12], [37].

Table 4 shows a summary of common cryptographic
algorithms that are under threat by quantum computers,
because of their ability to solve BQP problems
proficiently. This ability empowers quantum computers to
decrypt many of the cryptographic systems in use today.

TABLE 4. COMMON CRYPTOGRAPHIC ALGORITHMS UNDER THREAT [11]

Cryptographic
Purpose

Cryptographic
Algorithm

Type Impact from
Quantum
Computer

Encryption AES-128 Symmetric
Key

Larger key sizes
needed

Hash Function SHA-256,
SHA-3

 Larger output
needed

Signatures,
Key establishment

RSA Public key No longer secure

Signatures,
Key exchange

ECDSA, ECDH
(Elliptic Curve
Cryptography)

Public key No longer secure

Signatures,
Key exchange

DSA
(Finite Field
Cryptography)

Public key No longer secure

103

D-Wave X2 is quantum computer is now operational
and Personal Quantum Computers (PQCs) may be
developed any-time soon for commercial sale. To prevent
hackers from having a field day compromising systems at
unthinkable scale in the future, better cryptographic
defenses have to be designed for post-quantum use.
National Institute of Standards and Technology (NIST)
has already begun the Post-Quantum Crypto Project in
which it plans to standardize post-quantum cryptography
[10]. So far, NIST has released a draft call-for-proposal
document outlining submission requirements and
evaluation criteria for post-quantum public key
cryptography standards [38]. Soon it will begin accepting
proposals from researchers for quantum-resistant public
key encryption, digital signature, and key exchange
algorithms. The deadline for submission is November
2017 [39], after which all proposals will undergo intense
public scrutiny. Finally, NIST will select at least one
algorithm for standardization [10].

IV. RECOMMENDATIONS

The following solutions will ensure development of
quantum resistant cryptography for use in classical
computers that can help prevent attacks by quantum
computers and related technologies.
1. Use current unsolved-problems in mathematics as the

mathematical base for the cryptographic algorithm. The
chosen problem should be difficult enough even for a
quantum computer to solve. Current unsolved problems
in mathematics are listed in
https://en.wikipedia.org/wiki/List_of_unsolved_proble
ms_in_mathematics. The list includes Hilbert’s
problems, Landau’s problems, Taniyama’s problems,
Thurston’s problems, Smale’s problems, Millennium
prize problems (P vs NP, Hodge conjecture, Riemann
hypothesis, Yang-Mills existence and mass gaps,
Navier-Stokes existence an smoothness, Birch and
Swinnerton-Dyer conjecture), and other unsolved
problems in – algebra, algebraic geometry, analysis,
combinatorics, discrete geometry, Euclidean geometry,
dynamical systems, graph theory, model theory, and
number theory [40].

2. Any algorithm that has been broken in classical
computers so far has to be made obsolete for use in
post-quantum era. If for example, AES-128 has been
broken in classical computing attack then there is no
use strengthening it with larger key size of 1024, as
quantum computing attack will be able to defeat it
anyway.

3. The chosen algorithms should not use finite field,
integer factorization, or discrete log problem as their
mathematical base as they can be efficiently solved
using quantum computing capabilities.

4. If the keys are used, they should be substantially large
integers (more than 300-digit) prime numbers.

5. Develop cryptographic algorithms that cannot be
broken by Shor’s and Gover’s algorithms on quantum
computers.

6. Develop cryptographic algorithms that cannot be
broken by any of the powerful algorithms patented by
D-Wave in the development of D-Wave X2 computer.

7. McEliece and Lattice-based cryptosystems that are also
currently not known to be broken by quantum
computers can be also used for now.

8. In the future, pure quantum cryptography that use
quantum physics characteristics such as photons and
electrons can be designed for quantum computer use
only.

V. CONCLUSIONS

There is no doubt that we live in a time when top-
most Cybersecurity implementations are vital in
technologies we use for our daily communications service
needs. The rise of quantum computing technologies such
as D-Wave quantum computer will pose security threat to
the current cryptographic defenses. Hence, there is a vital
need to develop better cryptographic systems that can
provide post-quantum protection in classical computers,
and can interoperate with conventional networks and
protocols. The recommendations provided as solutions can
be used to devise better cryptographic algorithms for
future use.

REFERENCES

[1] EY, "Creating trust in the digital world - EY's Global Information
Security Survey 2015," EYGM Limited, 2015.

[2] Norse, Oct 2016. [Online]. Available:
http://map.norsecorp.com/#/.

[3] R. P. Feynman, "Quantum Mechanical Computer," Optics News,
pp. 11-20.

[4] R. P. Feynman, "Simulating Physics with Computers,"
International Journal of Theoretical Physics, vol. 21, no. 6/7, pp.
467-488, 1982.

[5] R. P. Feynman, "Space-Time Approach to Non-Relativistic
Quantum Mechanics," Reviews of Modern Physics, vol. 20, no. 2,
pp. 367-387, April 1948.

[6] D-Wave Systems Inc, "The D-Wave Quantum Computer," 2015.
[Online]. Available:
http://www.dwavesys.com/sites/default/files/D-Wave-brochure-
Mar2016B.pdf. [Accessed 1 October 2016].

[7] top500, "Top 500 List - June 2016," [Online]. Available:
https://www.top500.org/list/2016/06/ .

[8] Wikipedia, "Exynos," Oct 2016. [Online]. Available:
https://en.wikipedia.org/wiki/Exynos. [Accessed 1 October 2016].

[9] Intel, "7th Generation Intel Core i7 Procesors," 10 October 2016.
[Online]. Available:
http://www.intel.com/content/www/us/en/processors/core/core-i7-
processor.html. [Accessed 18 October 2016].

[10] NIST, "Post-Quantum Crypto Project," National Institute of
Standards and Technology, August 2016. [Online]. Available:
http://csrc.nist.gov/groups/ST/post-quantum-crypto/index.html.
[Accessed 20 September 2016].

104

[11] NISTIR 8105, "Report on Post-Quantum Cryptography," 2016.

[12] NIST-SP800-57, "Recommendation for Key Management, Part 1:
General, Rev.4," National Institute of Standards and Technology,
Gaithersburg, 2016.

[13] Wikipedia, "Cryptographic hash function," 1 October 2016.
[Online]. Available:
https://en.wikipedia.org/wiki/Cryptographic_hash_function .
[Accessed 10 October 2016].

[14] FIPS180-4, "Secure Hash Standards (SHS)," National Institute of
Standards and Technology, Gaithersburg, 2012.

[15] FIPS202, "SHA-3 Standard: Permutation-based hash and
Extendable Output Functions," National Institute of Standards and
Technology, Gaithersburg, 2015.

[16] FIPS186-4, "Digital Signature Standard (DSS)," National Institute
of Standards and Technology, Gaithersburg, 2013.

[17] FIPS-198-1, "The Keyed-Hash Message Authentication Code
(HMAC)," National Institute of Standards and Technology,
Gaithersburg, 2008.

[18] Wikipedia, "Cryptography," Wikipedia, 18 October 2016.
[Online]. Available: https://en.wikipedia.org/wiki/Cryptography.
[Accessed 19 October 2016].

[19] R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,"
Communications of the ACM, vol. 21, no. 2, pp. 120-126, Feb
1978.

[20] FIPS197, "Announcing the Advanced Encryption Standard
(AES)," Institute of Standards and Technology, Gaithersburg,
2001.

[21] ISO/IEC 18033-3, "Information technology - Security techniques -
Encryption algorithms - Part3: Block Ciphers," 2010.

[22] Wikipedia, "RSA (cryptosystem)," Oct 2016. [Online]. Available:
https://en.wikipedia.org/wiki/RSA_(cryptosystem). [Accessed 10
October 2016].

[23] N. SP800-56, "Recommendation on Key Establishment Schemes".

[24] NIST800-56A (Rev.2), "Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm Cryptography,"
National Institute of Standards and Technology, Gaithersburg,
2013.

[25] W. Diffie and M. E. Hellman, "New Directions in Cryptography,"
IEEE Transactions on Information Theory, vol. IT.22, no. 6, pp.
644-653, 1976.

[26] E. Rieffel, "An Introduction to Quantum Computing for Non-
Physicists," Palo Alto, 2000.

[27] P. W. Shor, "Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer," SIAM Review,
Society for Industrial and Applied Mathematics, vol. 41, no. 2, pp.
303-332, 1999.

[28] PQCrypto, "Post-quantum cryptography," PQCrypto, 28 August
2016. [Online]. Available: https://pqcrypto.org/. [Accessed 27
September 2016].

[29] Wikipedia, "Quantum Computing," October 2016. [Online].
Available: https://en.wikipedia.org/wiki/Quantum_computing.
[Accessed 20 September 2016].

[30] S. Jordan, "Quantum Algorithm Zoo," The National Institute of
Standards and Technology (NIST), 22 April 2011. [Online].
Available: http://math.nist.gov/quantum/zoo/. [Accessed 12
October 2016].

[31] M. O. Rubinstein, "The Distribution of solutions to XY = N
(MOD A) with an application to Factoring Integers," Integers, no.
13, 2013.

[32] F. Grosshans, T. Lawson, F. Morain and B. Smith, "Factoring Safe
Semiprimes with a Single Quantum Query," arxiv:1511.04385v2,
2016.

[33] J. Proos and C. Zalka, "Shor's discrete logarithm quantum
algorithm for elliptive curves," arxiv:quant-ph/0301141v2, 2004.

[34] A. M. Childs and G. Ivayos, "Quantum computation of discrete
logarithms in semigroups," arxiv:1310.6238v2, no. 11, 2013.

[35] C. H. Bennet, E. Bernstein, G. Brassard and U. Vazirani, "The
Strengths and Weakenesses of Quantum Computation," SIAM
Journal of Computing, vol. 26, no. 5, pp. 1510-1523, 1997.

[36] Wikipedia, "Elliptic Curve Digital Signature Algorithm," October
2016. [Online]. Available:
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_A
lgorithm. [Accessed 10 October 2016].

[37] Wikipedia, "Elliptic Curve Diffie-Hellman," October 2016.
[Online]. Available:
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93H
ellman. [Accessed 10 October 2016].

[38] NIST, "Proposed Submission Requirements and Evaluation
Criteria for the Post-Quantum Cryptography Standardization
Process," August 2016. [Online]. Available:
http://csrc.nist.gov/groups/ST/post-quantum-
crypto/documents/call-for-proposals-draft-aug-2016.pdf.
[Accessed 20 September 2016].

[39] NIST, "Post-Quantum Crypto Project - Workshops," National
Institute of Standards and Technology, August 2016. [Online].
Available: http://csrc.nist.gov/groups/ST/post-quantum-
crypto/workshops.html. [Accessed 20 September 2016].

[40] Wikipedia, "List of Unsolved problems in Mathematics,"
Wikipedia, October 2016. [Online]. Available:
https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mat
hematics. [Accessed 20 October 2016].

105

