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Abstract—Advancements in the field of mathematical rigidity theory
have opened up a number of exciting opportunities for computational
predictions of protein flexibility and their dynamics. Starting with a
3D protein structure, several programs such as FIRST model the
protein as a constraint multigraph, consisting of vertices (atoms) and
edges (covalent bonds, hydrogen bonds, electrostatic interactions, and
hydrophobic contacts). FIRST applies the pebble game algorithm on
the resulting multigraph which rapidly decompose the protein into
rigid clusters and flexible regions. Using an extension of FIRST and
the pebble game algorithm we propose a computational approach for
studying a biological phenomenon ‘allostery’. Allostery refers to an
effect of binding at one site to another, often significantly distant
functional site on the protein, allowing for regulation of the protein
function. Most dynamic proteins are allosteric and allostery has even
been coined the ‘second secret of life’, however the molecular
mechanisms that give rise to allostery are currently poorly understood.
Extending our earlier seminal work, we have developed a rigidity-
transmission allostery (RTA) algorithm which predicts if mechanical
perturbation of rigidity (mimicking ligand binding) at one site of the
protein can propagate across a protein structure and in turn cause a
transmission and change in degrees of freedom and conformation at a
second distant site, resulting in allosteric transmission. Since RTA
algorithm is computationally fast, we can rapidly scan many unknown
sites for rigidity-based allosteric communication, identifying potential
new allosteric sites and quantify their allosteric effect. We will review
the functional importance of protein flexibility and mathematical and
algorithmic background of rigidity theory and method FIRST. In this
originative expose we describe rigidity based mechanistic allostery
communication model. We will also provide a few illustrations of
rigidity-based allostery communication on actual protein structures,
including the important signaling G-protein coupled receptors. This
method will have important consequence in general understanding of
allostery and in aid of design of allosteric drugs.

Keywords— allostery, protein structure, protein flexibility, rigidity
theory, pebble game algorithm, molecular theorem, FIRST, rigidity-
transmission allostery algorithm.

I. INTRODUCTION AND ALLOSTERY

The post genomic era has revived the focus on characterizing
the protein function and their regulation [1, 26]. Because
proteins are fundamental to most cellular function, there is a
significant interest to understand how these macromolecules
perform various complex tasks. Allosteric regulation of protein
function, the concept which was first introduced by Monod and
Jacob in 1960s [2], refers to transmission of signals from
ligand/substrate binding site(s) to a topographically distinct and
remote orthosteric/active site. The binding of a ligand, drug or
other protein partner at the allosteric site(s) triggers a local
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conformational change that can propagate a substantial distance
across the protein structure to cause a rearrangement and
change in conformation and dynamics at the distant active site.
Allostery is integral to the control of metabolic and signalling
pathways and it provides organisms the ability to adapt to
constant changes in cellular and environmental conditions [1, 3,
5]. Allostery is one of the most powerful and prevalent means
of regulating protein activity and has been referred to as ‘the
second secret of life’ [3] second only to the genetic code. It is
now becoming widely accepted that all dynamic proteins are
allosteric [5]. Many physiological activities are controlled by
allostery and allosteric effect has direct impact on disease states
[5]. Allostery can both cause disease and contribute in the
development of new therapeutics [15].

Remarkably, even after 50 years since the concept of allostery
was first introduced, the mechanism of allosteric
communication still remains poorly understood. Despite the
lack of any major breakthroughs surrounding allostery, in 2004
the US Food and Drug Administration (FDA) approved the first
allosterically designed drug and since then many more have
been approved. Over the past few years, there were over 1000
papers published on allostery each year, demonstrating its all-
encompassing importance in biology and medicine. Since
allostery is a crucial biological phenomenon for understanding
biological systems, disease and is critical in therapeutics and
drug design, decoding the allosteric mechanism remains one of
the key long-standing unsolved problems in biological
sciences.

With the advancements in high resolution X-ray
crystallography and Nuclear Magnetic Resonance (NMR), the
static structures of many proteins have been solved, but
ultimately protein function is controlled by its dynamic
character [26]. One of the great challenges in understanding any
protein function and its regulation, including the elusive
allosteric mechanism, involves deep knowledge and modeling
of protein flexibility and its dynamics. Although high quality
static 3-dimensional structures provide some insights, a
cherished desire of any protein scientist is to watch proteins
move in real time at atomistic level as they perform their
functions. Despite many advances in experimental
biochemistry and computational molecular dynamic
simulations we are still far from realizing such a dream.
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Recent advancements in the field of rigidity theory [8,24] have
opened up a number of exciting opportunities for computational
predictions of protein flexibility and their dynamics. In rigidity
theory, proteins are modeled as geometric frameworks
consisting of atoms and various connecting intermolecular
forces. Programs such as FIRST [10] apply the mathematical
results of rigid and flexible structure and decompose a protein
framework into flexible and rigid regions, and starting with
such a decomposition, fast Monte-Carlo methods such as
FRODA [21] were developed for simulating the protein
motions.

In section II we provide a brief review of the close link between
protein flexibility and protein function and current available
techniques for measuring protein flexibility. In section III we
give a brief description of mathematical rigidity theory and how
combinatorial characterizations of flexible and rigid molecular
structures can be used to analyze protein flexibility and motions
as is implemented in software FIRST and FRODA. We will
demonstrate how biologically relevant questions surrounding
the effects of mutations on flexibility, which are extremely
challenging to probe with experiments and traditional
computational approaches, can be tackled with FIRST.

As a main highlight and contribution of this paper we introduce
a novel mechanistic description model of allostery that is based
on concepts in rigidity theory (section IV), extending our earlier
seminal work in mathematical allostery. We will show how our
method rigidity-transmission allostery (RTA) algorithm can be
used to predict and quantify allosteric interactions in protein
structures. Examples of the output of RTA algorithm will be
demonstrated on largest receptor class GPCRs and eukaryotic
translation initiation factor protein (section V). With RTA
algorithm we can identify the allosteric pathways and detect
potential novel allosteric sites, which has direct applications in
design and detection of allosteric therapeutics. These are all
crucial problems in the area of allostery research.

II. PROTEIN FLEXIBILITY AND FUNCTION

Proteins (from the Greek ‘protos’ meaning ‘of primary
importance’) are the most versatile macromolecules which
perform crucial functions in essentially all biological processes
[1]. Proteins function as catalysts, they transport and store other
molecules such as oxygen, they provide immune protection,
and are also responsible for carrying out important transduction
signals in and out of the cells, among many other biologically
significant functions [1]. Proteins are polypeptide chains
composed of sequences drawn from twenty amino acids,
sometimes referred as the building blocks of life, which
encodes its 3-dimensional structure. High resolution X-ray
crystallography and NMR structure determination experimental
techniques have revealed their beautiful structural complexity
and in many ways have revolutionized our understanding how
proteins function at the atomistic resolution. The
experimentally solved 3-dimensional protein structures contain
the coordinates of individual atoms and are deposited into the
protein data bank (PDB), which can be viewed, modeled and
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aesthetically appreciated with various molecular visualization
software.

The pdb file of a protein contains crucial structural information,
but it can also provide a misleading view of protein function as
proteins are not best viewed by a single folded structure.
Instead, a much richer and complete representation of proteins
takes into the account both thermodynamic and kinetic nature
of proteins [26]. In other words, proteins are highly dynamic
sampling various conformations around the complex
multidimensional energy landscape which can undergo
conformational dynamics even under conditions that strongly
favor a well-defined low energy ‘native’ state [26]. To model
and deeply understand protein function and its regulation such
as allostery, we must be able to accurately and efficiently
predict flexibility of proteins at the atomistic level. Connecting
the structural information of a protein with flexibility and
rigidity predictions can provide a much richer picture and
decode the proteins function and mechanism. With the
exceptions of intrinsically flexible proteins (see below on TAU
protein in Alzheimers), proteins function at the delicate border
of rigidity and flexibility. Most proteins need rigidity to
maintain their shape and just the right amount of flexibility to
perform their biological functions. A number of diseases are
often linked to key proteins adopting non-native ‘faulty’
conformations (i.e. incorrect misfolded shapes) which can
ultimately lead to creation of overly rigid and indestructible
complexes (i.e. ‘amyloid and prion diseases' such as
Alzheimers, Parkinsons, Mad Cow Disease) [1, 25, 28].
Flexibility and rigidity predictions of proteins is an active area
of research in both experimental protein science and
computational biology.

Determining flexible and rigid regions in a protein and
understanding how they move is a complex task [26]. Typical
protein structure have several thousands of atoms and contain
thousands of conformational degrees of freedom. The situation
can become even more complicated in multiprotein complexes
that have quaternary structures, which are a group of two or
more interacting polypeptide chains called oligomers. In
addition to the large size of proteins and complexes, and high
conformational degrees of freedom, the conformational
fluctuations can be rapid, transient and result in structures that
can be spectroscopically indistinguishable from the ground-
state (x-ray crystallography snapshot) [18, 26]. Protein
flexibility is largely influenced by the interactions with ligands,
drugs, other proteins, mutations and changes in the local
biochemical environment (i.e. temperature, ph, etc.). Protein
motions are also known to occur on wide range of time scales,
ranging from fast short-amplitude motions (i.e. bond
vibrations) occurring on femtosecond range, side chain motions
on the picosecond to nanosecond timescale all the way up to
slow timescales with larger-amplitude collective domain
motions which are often important for catalysis, occurring on
milliseconds to seconds range [21, 26]. All these factors
combine to contribute to the difficulty in obtaining knowledge
about proteins flexibility and their motions.



A wide range of experimental data (NMR techniques like order
parameter measurements, chemical shifts, hydrogen/deuterium
exchange (HDX) data, crystallographic B-values etc) can
provide some insights into the dynamic nature of proteins [18,
26]. However, these techniques are limited as it is nearly
impossible to see individual atoms undergoing dynamics.

Experiments are also costly and can take a long time to measure.

There has also been a growing interest to apply and incorporate
sophisticated biophysical methods together with mathematical
algorithms. Computational simulation methods have provided
many critical advancements in modeling and predictions of
protein flexibility and dynamics [6, 7, 21]. Molecular dynamics
(MD) simulations has long been a traditional computational
approach that is used to study molecular and protein motions
[7]. The trajectories of molecules or individual atoms are
determined by repetitively obtaining a numerical solution of the
Newton's classical equations of motions F = ma by forward
integration in time. Forces between the molecules and potential
energies are approximated by the use of all-atom force fields
(energy functions). In an ideal situation and a nearly perfect
description of force field, MD simulation can be quite powerful
as the precise position of each atom at any instant in time for a
single protein molecule can be tracked. However, MD
simulations are still largely impractical as it takes a prohibitive
amount of computational power to investigate most protein
motions, in particular the functionally important larger-
amplitude collective motions occurring on the micro to milli-
second time-scales. The computational time needed to reach
motions on the longer relevant timescales, even with massively
parallelized MD runs via costly special-purpose commodity
computer clusters such as Anton [17], is beyond practical wide-
range application. To overcome the computational limitations
combined with the rapid growth in both the number of protein
structures deposited into the protein data bank and the
increasing size of the newly crystalized structures, there is a
pressing need to come up with alternate computational tools
that simplify the force fields and yet can still provide accurate
and efficient protein flexibility prediction.

One such emerging methodology that has provided numerous
advances over the past 15 years in the area of computational
predictions of protein flexibility stems from the results inspired
from work in structural and mathematical rigidity theory [23].
A fast rigidity-theory method and accompanying protein
flexibility analysis software that has gained interest and
popularity is the program FIRST [10]. Over the last few years,
a number of research groups have developed various spinoffs
of these methods.

III. PROTEIN FLEXIBILITY CAN BE EFFICIENTLY
ANALYZED WITH RIGIDITY THEORY

A. Combinatorial Rigidity Theory of molecular frameworks

Rigidity theory is the study of rigidity and flexibility of
structural frameworks which are specified by geometric
constraints such as fixed distances and directions on a collection
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of points and rigid bodies [24]. Because the rigidity properties
of either natural structures (molecules, crystals etc) or
engineered structures (bridges, robots etc) is essential to its
architecture and function, rigidity theory has many applications
in engineering, robotics, material science and biology. Rigidity
theory has both geometric and combinatorial characteristics
relying on techniques in linear algebra, discrete and algebraic
geometry, graph theory and combinatorics. We review the basic
results in combinatorial rigidity theory which are the most
relevant for analysis of protein flexibility and allostery. For
thorough review of rigidity theory see [23, 24].

Two crucial components for computational modeling and
prediction of macromolecular flexibility and their motions are:
(i) a realistic physical representation of molecules and their
interactions and (i) a mathematically sound theory and
algorithms for predicting flexibility.

Proteins are held together with various forces (interactions) of
different strengths. A useful modelling assumption is to view
such chemical interactions as constraints between atoms. In the
rigid geometry assumption of molecules, the angles between
the bonds of an atom are fixed and only dihedral angles are
allowed to rotate. The locked dihedral (angles) rotations
associated with double bonds (i.e. non-rotating bonds) and non-
covalent interactions impose additional constraints. With this
model in mind, we define a molecular framework as a
collection of atoms which are treated as fully rigid bodies in 3-
space with six trivial degrees of freedom and bonds as hinges,
leaving one rotational degree of freedom (dihedral) between the
two connecting atoms [24]. In the language of rigidity theory,
molecular framework is a special case of general structures
known as body-hinge frameworks, which consist of rigid bodies
connected by revolute hinges. Since each hinge (bond) removes
five degrees of freedom between the two bonding atoms, it is
useful to model a hinge by a set of five bars connecting the two
bonding atoms where each bar removes one degree of freedom.
Such structures are called body-bar frameworks - a collection
or rigid bodies connected by linear bars (Fig. 1 b, ¢). There is
special geometric criteria to be considered when selecting the
five bars for a molecular bond as bonds are not generic hinges
but this is not important for this paper (see [24] for details).
Double or peptide bonds are modelled as a set of 6 bars between
the two atoms which locks the rotational degree of freedom.
Non-covalent interactions, which are critical for overall protein
structure and function are also modeled as a set of bars that
further restrict the proteins internal conformational degrees of
freedom. Disulphide bonds and hydrogen bonds are typically
modelled with 5 bars. Depending on the energy strength and
persistence of a hydrogen bond, the number of bars can be
adjusted between one and five [18]. Hydrophobic contacts are
modelled with 2 bars between any close contacting pairs of
carbon-carbon, carbon-sulfer or sulfer-sulfer atoms. Combining
covalent and non-covalent interactions, this defines the overall
body-bar framework model of a protein (Fig. 1 e).

A body-bar framework is rigid if every motion results in
framework that is isometric to the original one (i.e. the
framework only has rigid-body motions), otherwise it is



Fig. 1. (a) Body-hinge structure in 3D composed of rigid bodies connected by
hinges (lines). (b) Body-bar framework (c) Molecular framework of a diatomic
molecule consisting of two atoms and a single bond can be viewed as a body-
hinge structure where atoms are bodies and hinges are bonds. In a diatomic
molecule, two atoms rotating about a single bond can be modelled as a generic
body-bar structure (two bodies connected with 5 bars). In a diatomic.molecule,

there are a total of seven degrees of freedom (6x2 — 5) where each bar has
removed a degree of freedom, with remaining ever-present 6 degrees of
freedom of trivial rigid body motions and one additional internal degree of
freedom corresponding to a rotation around the bond. (d) Generic cyclohexane
molecule viewed as a body- bar structure is minimally rigid ( |E| = 6(6) —6 =

30 and on all subgraphs the counts prescribed in Molecular Theorem are
satisfied.) (e) Protein structure in stick representation (body-hinge) with black,

red and green lines corresponding to covalent bonds, hydrogen bonda and
hydrophobic contacts, respectively. (e) Body-bar representation of a protein.

flexible [24]. The combinatorial structure of a general body-bar
framework is a multigraph G = (V, E) where V is a set of bodies
(atoms) and E is a set of bars. Tay’s remarkable theorem [19]
shows that the rigidity of any generic body-bar framework
(which extends to body-hinge frameworks) is determined only
by the underlying multigraph G. Generic here means that the
bars avoid special geometries, or more specifically the
underlying rigidity matrix has a full rank (see [23, 24] for
details). Almost all body-bar frameworks are generic [21].
Tay’s theorem also extends to generic body-hinge structures
[20]. A powerful result that was conjectured by Tay and
Whiteley in 1983 and was recently proved by Katoh and
Tanigawa [8] shows the same counting condition stated in
Tay’s theorem also characterizes the rigidity of generic
molecular frameworks. This result is known as the Molecular
Theorem. We have combined it with Tay’s theorem into one
statement. A body-bar framework is minimally rigid if removal
of any edge (bar) results in a flexible framework.

THEOREM 1: (Tay’s Theorem - Molecular Theorem) [8]: A
generic  body-bar framework (and generic molecular
framework where bonds are replaced by 5 bars) on a multigraph
G=(V,E) is minimally rigid if and only if [E| = 6|V| — 6, and on
all subsets of edges [E’|<6|V'| — 6.

The 6/V| — 6 count on a multigraph defines an independent set
in a matroid [22, 23], which naturally leads to a greedy
algorithm. Using the O(V?) ‘pebble game algorithm’ [11] it is
possible to track the 6]V| — 6 count for independence of edges
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and rigidity in a multigraph. The implementation of the pebble
game and Molecular Theorem has led to the development of
program FIRST.

B. FIRST and protein flexibility predictions

Starting with a PDB structure (i.e 3-dimensional atomic
coordinates), FIRST [10] generates a body-bar framework (a
multigraph) of a protein, consisting of atoms (vertices) and
edges (covalent bonds, hydrogen bonds, hydrophobic contacts
and electrostatic interactions) (Fig. le). Hydrogen bonds are
critical for protein stability [1, 18]. The strength of each
hydrogen bond is calculated using the Mayo energy potential
which takes into effect the local donor-hydrogen-acceptor atom
geometry [10]. A hydrogen bond cutoff energy value is selected
such that all bonds weaker than this cutoff are ignored. Once
the final constraint multigraph is obtained, FIRST then applies
the pebble game algorithm [13, 19], and decomposes the
protein into rigid clusters and flexible regions. A rigid cluster
moves as a single rigid body with its trivial 6 degrees of
freedom (3 rotations and 3 translations). Every bond in a rigid
cluster is non-rotatable. Protein normally consist of several
rigid regions connected by flexible linkers (Fig. 2).

The main workhorse of the program FIRST, the pebble game
algorithm, which originates from efficient bipartite matching
formulations, checks the counting characterization of generic
rigidity of molecular frameworks prescribed by the Molecular
Theorem (Theorem 1). Due to the combinatorial nature of the
Molecular Theorem, the pebble game does not depend on the
atomic coordinates, it is a combinatorial integer algorithm as
opposed to numeric, it always gives an exact answer. The
pebble game determines if a constraint (edge) is ‘independent’
(i.e. removes degrees of freedom from the network) or is
otherwise ‘redundant’. Since it is a greedy algorithm, the order
the edges are tested for independence is not important — the final
rigidity and degree of freedom prediction is always unique.
Pebbles are synonymous with degrees of freedom and a
removal of a pebble indicates the inserted constraint (edge) is
independent. Redundant constraints do not remove degrees of
freedom (pebbles) as their insertion (or deletion) to an already
rigid region causes no change in rigidity. A rigid region is
‘redundantly rigid’ if a removal of any one of its constraints
(edges) still keeps the region rigid. If a rigid region in the
protein has significant number of redundant edges, then
breaking some of its constraints like a hydrogen bond or
hydrophobic contact will not alter its rigidity. Redundantly
rigid region is what a biochemist would call a ‘stable region’ as
its rigidity is not affected by the flickering nature of the
hydrogen bonds [18].

Rigidity prediction in FIRST is performed at a hydrogen bond
energy cutoff, with default at -1 kcal/mol (Fig. 2 a, b). Changes
in the rigidity can be monitored by a gradual removal of
hydrogen bonds one by one (i.e. by lowering of hydrogen bond
energy cutoff) in the order of increasing strength, keeping all
covalent and hydrophobic interactions intact, and then redoing
the rigidity analysis at each step identifying rigid and flexible
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Fig. 2. Rigidity prediction using program FIRST. A2A adenosine receptor is
mainly composed of a single rigid cluster at (a) -0.1 kcal/mol hydrogen bond
cutoff as most hydrogen bonds are modeled in the network and (b) several
clusters (transmemrane a-helices) at -1.1 kcal/mol. (c) Hydrogen bond dilution
plot indicates how protein breaks down as we decrease the cutoff and break
more hydrogen bonds. Columns on left are updated and display the hydrogen
bond energy levels, corresponding cutoff lines shown at -0.1 and -1.1 kcal/mol
are highlighted. Flexible regions are indicated with thin black lines, and rigid
regions are indicated with blocks, with separate colours indicating distint rigid
clusters. Initially with inclusion of all potential hydrogen bonds, the protein is
quite rigid (red block) and as hydrogen bonds are gradually broken with
increasing energy, this GPCR decomposes into several rigid clusters.

regions. The change in rigidity can be visualized nicely using
the hydrogen bond ‘dilution plot’ (Fig. 2 ¢) [8, 18].

While tremendous computational resources are needed to
simulate protein flexibility with MD simulations, FIRST can
predict the rigid clusters and flexible connections (known as the
rigid cluster decomposition) very rapidly (less than a second on
a standard PC). Previous studies have demonstrated that FIRST
gives accurate predictions of flexibility and rigidity in proteins
that match well with experimental evidence [8, 18], and it has
been applied on large protein assemblies such as viral capsids
[6]. It has also been utilized in many practical application such
computer drug design, protein engineering, predictions and
replications of experimental measures of dynamics such as
hydrogen-deuterium exchange [18] and many others. We give
one useful illustration of the wide applicability of rigidity-
theoretical protein flexibility computations — predicting the
effect of mutations on flexibility of proteins.

Faulty mutations are frequently observed in genetic diseases [1].

For instance, in cystic fibrosis disease, a key protein cystic
fibrosis  transmembrane conductance regulator (CFTR)
undergoes a single point mutation AF508, a deletion of amino
acid phenylalanine [25]. A number of studies have
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Fig. 3. Rigid cluster decomposition obtained with FIRST on CFTR protein at
—1 kcal/mol hydrogen bond cutoff. Separate colours indicated dinstinct rigid
cluster. Blue is the larget rigid cluster. Black represents highly flexible region.
(a) Native CFTR prediction with phenylalanine shown in green sticks is
dominated by a large rigid cluster (pdb id: 2pze). (b) Mutant AF508 with
missing phenylalanine is significantly more flexible (pdb id: 2pzf).

demonstrated that the mutant form AF508 CFTR has
significantly greater conformational flexibility compare to the
native (wild-type) structure [25] and this increased flexibility is
believed to lead to premature degradation and loss of CFTR
function.

To investigate this phenomenon with rigidity theory, we
analyzed flexibility of the mutant and non-mutant (wild type)
CFTR protein with FIRST (Fig. 3). FIRST prediction, which
took only seconds to perform on a standard CPU machine,
indicates that the structure without the phenylalanine is
significantly more flexible than the non-mutant form. The non-
mutant form is dominated by a single large rigid structure while
the mutant form consists of many smaller rigid clusters
connected by a large flexible region. FIRST analysis is indeed
in agreement with the MD simulations and experimental
evidence that a deletion of a single amino acid results in a
significant overall reduction of rigidity [25]. This also raises a
possibility of an allosteric control of CFTR, where an insertion
of a single amino acid not only locally rigidifies the nearby
residues but propagates and rigidifies other distant parts of the
protein.

Allostery of CFTR will not be discussed here, but it certainly
paves a prospect for further research avenues to be explored
with both experimental studies and computational rigidity
allostery detection (see below).

FIRST decomposes the protein into rigid clusters and flexible
regions, but does not simulate actual protein motions. One
powerful extension uses the rigid clusters in geometric
simulation algorithms such as FRODA [21] to explore the
dynamics. Rigid clusters serve as a natural coarse graining step,
where hundreds of degrees of freedom are removed from the
overall system. Monte Carlo method FRODA uses the output
of FIRST as a preprocessing step to explore the conformational
space of the flexible regions. FRODA rapidly (100 000 time
speed ups can be obtained when compared to MD simulations)
generates conformations that are consistent with bond lengths
and angular constraints, while maintaining all rigid clusters. We
have developed similar technologies recently and applied it on
Tau protein, a key protein in number of pathologies and



dementias such as Alzheimer’s disease [28]. Tau protein is part
of a class of disordered proteins that are highly flexible and MD
simulation are of no practical use due to their high dynamic
nature. One of the main challenges in finding successful
therapeutics for Alzheimer’s is the poor understanding of the
atomic structure and dynamics of the TAU protein. We were
able to show a first unprecedentedly detailed view of the
structural and dynamic nature of both the normal and defective
forms of Tau [28]. The outcome of this study provides rich
understanding of structural basis of tau pathology. It is clear
that rigidity- inspired methods and related emerging
technologies are important tools in modern protein science
research and drug discovery.

IV. DESCRIPTION OF RIGIDITY TRANSMISSION
ALLOSTERIC MECHANISM

The link between protein flexibility and its function is clear and
rigidity theory offers powerful computational techniques for
understanding this critical relationship. We bring about a
further connection and introduce a first rigidity-based
description of allosteric control of protein function. The
importance of allosteric regulation of protein function is widely
established (see section I), but most critical questions
surrounding allostery still remain unresolved. One of the key
remaining puzzles is to describe the general mechanism of
distant coupled conformational change. Specifically, how a
structural change in conformation at an allosteric site (in some
cases a subtle change) induces a change in conformation at a
distant active site. Moreover, what region in the protein is
important for this transmission of information (i.e. what are the
allosteric pathways?) [3, 5].

We propose transmission of changes in rigidity, more
specifically degrees of freedom propagation across the protein
network, offers a plausible mechanical model for allosteric
coupling between distant sites. This model is founded on our
seminal work in the area of rigidity theory [19], which was also
considered by Whiteley et al [4] in special geometric
frameworks. Our allostery model predicts if mechanical
perturbation of rigidity (mimicking ligand or drug binding) at
one site of the protein, call it A, can percolate and transmit
across a protein structure and in turn cause a transmission and
a change in rigidity and conformational degrees of freedom at
a second remote site B. Local perturbation of rigidity at site A
refers to insertion of edges (constraints) to A up to its
rigidification. If there is a reduction in conformational degrees
of freedom in site B, due to the perturbation of A, we say that
A transmits degrees of freedom to B and the two sites are in
rigidity-based allosteric communication. The strength of
allosteric signal is quantified by the maximum possible amount
of transmission (reduction in DOF).

Presence of rigidity-based allostery (transmission of degrees of
freedom) is equivalent to a statement that a change in shape

(conformation) in site A (i.e. mechanically change the shape as
binding might) will lead to rearrangement and change of shape
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of the second site B. Thus, rigidity-based allostery captures the
essence of coupled conformational change inherent in allostery.
As we show below, characterizing the allosteric mechanism and
quantifying the allosteric response by transmission of degrees
of freedom between distant sites can also aid in identifying
novel allosteric sites. Our methods and techniques can also be
used to map out the allosteric pathway.

We first illustrate the concept of degree of freedom
transmission and shape change propagation between remote
sites in frameworks. In Fig. 4 (a) we have a 2-dimensional bar
and joint framework [23] that is composed of bars (rods) which
fix the distances between the connecting flexible ball joints.
This framework has a single non-trivial degree of freedom (we
can check this with rigidity matrix [23]). If we slightly vary the
distance between the two joints u and v in site A (analogous to
simulating ligand binding), this initial change in shape
propagates across the framework and results in a substantial
change in shape and conformation at the distant site B.

Equivalently, if we rigidify site A, fixing the distance between
the end joints in A (i.e. insert a bar connecting u and v) will
rigidify site B, stopping the motion in B. In this example there
is a transmission of one degree of freedom between A and B. In
protein analogy, a small ligand that fits in site A can pull on the
two vertices, which in turn leads to a change in conformation
and a closing motion at site B, allowing site B to more likely
dock its binding ligand partner. This example provides a
hypothetical analogue to positive allosteric modulation [1]
where binding of one ligand enhances the binding to another
ligand at a distant site.

d(s,t)= 0.24 cm

d(u,v) =1.21cm

Fig. 4. Allostery in frameworks: transmission of degrees of freedom and shape
change. (a) Bar and joint framework has one non-trivial DOF (excluding green
edges) and this single DOF can transmit between A and B. If we move u and v
closer together (simulating ligand binding) this slight motion in A propagates
across the framework and results in a change in conformation in site B. Note
that green edges are irrelevant for this transmission; we can remove green edges
and the same effect is observed. This example was generated with Geometer’s
sketchpad software. (b) Applying the RTA algorithm (see below) on this body-
bar framework, we see that DOF® = 2 DOF can be transmitted between the
sites A and B. Here we have shown the output of the pebble game, which can
be used to compute the necessary DOF counts prescribed in RTA algorithm and
the relevant region [19] (red vertices and edges) which is the region in the
multigraph responsible for transmission of DOF (allosteric pathway).



Similar examples can be constructed that resemble negative
allosteric regulation, where a closing motion at one site results
in an opening motion (and release of a ligand) at a distant site.
We have also illustrated the ability of a body-bar molecular
framework to model the transmission of rigidity and changes in
degrees of freedom across the structure (see Fig. 4 b).

We now describe the algorithm for detecting transmission of
degrees of freedom and allostery in protein structures.

A. Rigidity-transmission allostery (RTA) algorithm.

Input: A molecular body-bar multigraph Gy corresponding to
hydrogen bond energy cutoff h. Two disjoint vertex induced
subgraphs A and B.

Goal: Predict if rigidifying A transmits a reduction in
conformational degrees of freedom (DOF) at B.

1. Calculate the available DOF in site B, call it DOFE:
(DOF?B is the number of independent edges that would
need to be added to B that result in its rigidification.
Equivalently, we can run the pebble game algorithm
on Gy, and count the maximum number of free pebbles
less six we can gather on vertices in B [19].)

2. Perturb rigidity of A: rigidify A by adding maximum
number of independent edges within A.
3. Re-calculate the available DOF in B, call it

DOFBAperturbed'
Output: Transmission of DOF from A to B is:
DOFAB = DOFB — DOFBAperturbed
(i.e. maximum reduction in DOF at B given perturbation of A).
When DOF2B > 0, A and B are in allosteric communication.

Rigidity-based allosteric communication is completely
symmetric. In other words, the effect of perturbing rigidity of
site A on site B and the maximum amount of degree of freedom
transmission is identical if we perturb B and observe the effect
on site A. For transmission of degrees of freedom to be feasible,
both sites A and B have to have some internal flexibility [19].

Example of RTA algorithm: Refer to framework in Fig. 4 (b).

We obtain the following counts: DOF® = 2, DOF®perurbed = 0,

DOFAB=2 —0=2. Thus, in this example there is a transmission
of 2 degrees of freedom from A to B. In other words, rigidifying
A results in a reduction of 2 DOF in B and subsequent complete
rigidification of site B. Transmission of DOF occurs only over
the red region in the graph (relevant region), which can be
extracted with a relevant region detection algorithm we have
previously developed [19]. In contrast, the gray region in the
multigraph is irrelevant for transmission of DOF from A to B,
that is removal of gray region does not alter this transmission.

Remarkl: As the count of transmission of DOF is symmetric,
B can also transmit 2 DOF to A. However, as site A has 3 DOF
instead of 2, note that rigidification of site B would result in a
reduction in A from 3 DOF to 1 DOF, leaving some flexibility.
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Remark?2: The proofs of correctness of the degree of freedom
counts extracted from RTA algorithm, the pebble game
extensions that allow fast computations of counts in step 1 and
3, and the relevant region detection algorithm for detection of
allosteric pathway are not discussed here, for this we refer to
initial work on rigidity-based allostery transmission [19].

V. APPLICATIONS OF RIGIDITY-TRANSMISSION
ALLOSTERY IN PROTEINS

To show the applicability of rigidity-based modeling of
allostery on actual protein structures, we apply the RTA
algorithm on two protein classes, a G-protein coupled receptor
(GPCR) and eukaryotic translation initiation factor eiFA4E (or
4E for short). We only provide a brief biological discussion
here. Full detailed analysis and discussion of biological
consequence of the finding presented will appear in
forthcoming papers.

The largest class of receptors in the human genome are G-
protein coupled receptors (GPCRs), which are essential
components of signal transduction throughout the body [1, 12,
27]. GPCRs mediate most transmembrane signal transduction
across large distances over the cellular membrane by
responding to an enormous variety of extracellular stimuli
(drugs, hormones, neurotransmitters and other proteins). Since
GPCRs are responsible for the control of most information that
passes into the cell, they play a critical role in disease and are
the most commonly targeted receptor class in drug design.
About 50% of all modern medicinal drugs bind to GPCRs [27].

In humans there are over 800 GPCRs [1], whose 3-dimensional
structure consists of 7-transmembrane alpha-helices. Signal
transduction and activation is regulated by extracellular ligands.
Activating ligands of GPCRs are called agonists and
inactivating ligands are called antagonists or inverse agonists
and they roughly bind at the same location at the extracellular
region of receptor known as the ‘orthorsteric site’ [12].
Activation can also occur through binding events at other
allosteric sites. Upon binding of the agonist ligand, it is believed
that this information propagates across the receptor and results
in relative movement of a-helices and a change in conformation
at the intracellular side of the receptor, so it can activate and
engage binding of its G-protein partner [12, 27]. GPCRs are
naturally allosteric but how they transmit the allosteric signals
across the membrane is still not well understood and is a major
area of research in both academia and pharmaceutical industry.

To shed some light on the possible allosteric mechanism in
GPCRs, we have performed the analysis with RTA algorithm on
human adenosine A2A receptor (Fig. 5). This GPCR is a drug
target for various disorders such as inflammation, cancer,
diabetes, infectious diseases and neuronal defect disorders [12].
We defined site A as the orthosteric site (all atoms and induced
edges on the receptor that are interacting with the bound ligand)
and residues 230 and 291 at the intracellular side where G-
protein binds as site B (Fig. 5 a). We tested for rigidity-based
communication in four different available x-ray crystal structure
of A2A receptor, three which are in active configuration. RTA
algorithm was performed for all hydrogen bond energy cutoffs
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Fig. 5. RTA algorithm applied on human adenosine A2A receptor. (a)
Transmission of DOF was tested between site A (orthorsteric site) and site B
(G-protein binding region). Here we have shown the relevant region between
the two sites A and B in blue pointing out the allosteic pathway (in red)
connecting A and B in the adenosine-bound structure (pdb 2ydo) at -1 kcal/mol
cutoff. Gray parts are irreleant for allosteric transmission. (b) The range of
cutoffs where transmission occurs in adenosine-bound structure (2ydo) is
superimposed on its dilution plot, which starts at -0.944 kcal/mol and stops at
-1.387 kcal/mol. (¢) Plot of tranmission of DOF as a functin of the energy cutoff
in four different A2A receptor crystal structures. In all three active-like
structures bound to agonists, transnission of DOF occurs. In the inactive state,
tranmission of DOF is not seen. When the cutoff is close to 0 kcal/mol, no
transmission is possible as the whole protein is rigid including the sites A and
B. As we lower the cutoff and break more hydrogen bonds the protein becomes
less rigid and eventually allosteric transmission starts. Transmission of DOF
continues for some range of cutoffs and stops once the significant portion of
hydrogen bond network has been diluted.

h in increments of 0.01 kcal/mol and we obtained the DOF
transmission amounts for each cutoff, which can be visualized
in a plot showing DOF transmission as a function of an energy
cutoff (see Fig. 5 c).

The RTA prediction shows that in all three agonist-bound
(active) structures, perturbation of rigidity at the orthorsteric site
propagates across the receptor to the remote G-protein binding
region and transmits a change in degrees of freedom.
Remarkably, in the inactive structure there is no degree of
freedom transmission (Fig. 5 c). These findings are consistent
with the general roles of agonists vs inverse agonists on
activation and inactivation of the GPCRs [1, 12, 27]. Moreover,
this analysis suggests that transmissions of rigidity upon binding
of agonist is important for structural and conformational
changes required for activation of a GPCR and unlike agonists
the antagonist binding prevented this change in conformation to
propagate. This points to the role of rigidity-based
communication of functionally important in allosteric control of
A2A receptor.
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Remark: The two agonist ligands adenosine and NECA are
structurally very similar. The authors of the study that solved the
crystal structures of the A2A receptor with these two ligands
point out that the two configurations of the receptor are only
partially active [12]. The UKA agonists is somewhat different
and bigger than the other two agonists and the authors of the
pertaining study have suggested that UKA-bound receptor
conformation they obtained is in a fully active conformation
[27]. This may explain why adenosine and NECA bound
structures transmit DOF at an almost identical hydrogen bond
energy range, whereas UKA-bound receptor transmits more
DOF and also at an earlier and wider range of hydrogen bond
energy cutoffs.

We now illustrate the RTA algorithm on protein eiF4E (or 4E
for short). 4E directly binds to messenger RNA and plays a
crucial role in eukaryotic protein synthesis [1, 14]. 4E becomes
overexpressed in cancer cells and is an important drug target for
various cancers [14]. 4E strongly interacts with initiation factor
protein eiF4G (4G) and when the 4E-4G complex is formed, 4E
is in the active state. Disrupting the 4E-4G interactions is crucial
for development of anticancer agents [14]. Finding allosteric
sites on 4E is important as binding events at the allosteric sites
could propagate and disrupt 4G-binding.

As our method is computationally fast, we can rapidly scan
many unknown sites for rigidity-based allosteric
communication, identifying potential new allosteric sites.
Starting with the crystal structure of 4E bound to 4G, we
performed the RTA analysis by testing if remote sites on 4E are
in rigidity-based allosteric communication with 4G protein. In
order to not drastically disrupt the rigidity of 4E, we applied the
initial rigidity perturbation on the flexible loop regions which
are far removed from 4G. In terms of RTA algorithm, 4G was
taken to be site B. We then sequentially perturbed the rigidity
of every of 3 consecutive residues (site A) on the flexible loops
of 4E in a window sliding approach and then monitored if there
is a transmission of DOF to 4G. This was again performed for
various cutoff ranges h. If for any window of 3 consecutive
residues (site A in the RTA algorithm) we found transmission
of degrees of freedom to site B, we calculated the area under
the transmission curve (refer back to Fig. 5 ¢) to quantify the
intensity of degree of freedom propagation.

In Fig. 6 a we have shown the output of the allostery
predictions. We find that most of the loops on 4E (coloured in
blue) are not in allosteric communication with 4G, with
exception to one region around residues 77-82 (coloured in
red). Wagner and colleagues [14] discovered when
elF4E/elF4G inhibitor compound 4EGI-1 binds to 4E, which
prevents 4G binding, it bound at a remote location different
from 4G binding site suggesting that the mechanism was
allosteric (Fig. 6 b). Remarkably, this inhibitor bound on the
same region where we found the most degree of freedom
transmission to 4G. In fact, we see that the inhibitor is in direct
contact with residues 77-82 (Fig. 6 c). This finding clearly
points to a propagation of rigidity and degree of freedom as
being functionally important for allosteric transmission in 4E.
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Fig. 6. Detection of allosteric hotspots using RTA algorithm applied on
eiFA4E (4E). (a) 4E structure bound to 4G (purple) (pdb id: lejh). Distant loops
4E are coloured based on the intesity of DOF transmission. Most of the loops
(blue) are poor tranmitters of DOF with the exception of residues 77-83 (red
and circled) which we predict to be an allosteric hotspot. (b) 4E structucture
with the bound inhibitor drug 4EGI-1 (orange spheres) (pdb id: 4tpw) which
allosterically disrupts 4G binding. (¢) Close up view showing the spatial
proximity and direct contact of the drug 4EGI-1 (orange) and regions on 4E we
predict with RTA algorithm to be the most allosteric. 4E structure with inhibitor
(4E was removed) was superimposed with Pymol software onto 4E structure
bound to 4G.

Detection of allosteric hotspots is very powerful as it can provide
novel guidance in controlling the function of proteins. Drugs
which interact with allosteric surfaces on the proteins are
therapeutically preferable since they can provide greater
specificity and potency than the traditional drugs that interact
directly with the active site [3, 5]. Unlike allosteric sites, active
sites are largely conserved and structurally homogeneous across
other functionally diverse proteins.

VI. CONCLUSION

Rigidity theory provides powerful tools for studying protein
flexibility and its function. A straightforward method that
describes how allosteric signals are transmitted across
protein structures has been previously difficult to design [3,
5]. Our allostery detection method provides a new mechanistic
view of allostery through transmissions of rigidity and
conformational degrees of freedom and it can describe
functionally important features in protein signalling. Using the
RTA prediction we can quantify the strength of allosteric
signals, detect previously unknown allosteric sites and depict
the allosteric pathways that are crucial for the allosteric
communication across the network. Moreover, due to the speed
of the pebble game algorithm our techniques are suitable for
high throughput allostery analysis. Current research aims to
incorporate knowledge about the hydrogen bonding network
from multiple protein structures (ensembles from available MD
simulations or NMR structures). This should improve the
robustness of allosteric predictions and remove any sensitivities
related to a construction of a network using a single structure as
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we have previously demonstrated on flexibility predictions
[18]. Forthcoming papers will further demonstrate our
predictions are in agreement with experimental data and
provide strong case for rigidity-based allostery as a mechanistic
description of allosteric regulation. This should eventually
allow us to obtain a better understanding of allostery and tackle
the more difficult signalling events in the cell.
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