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Abstract—Over the past decades, prediction of costumers’ pur-
chase behavior has been significantly considered, and completely
recognized as one of the most significant research topics in
consumer behavior researches. While we attempt to measure
response of purchase intention to the contextual factors such
as customers’ age, gender and income, product price and sale
promotion, most of business models are basing on a linear equa-
tion to estimate weight of these factors due to the linear equation
is not only intuitive for other academics to compare and replicate
but also luminous to explain the results for business practitioners.
Nevertheless, comparing with other research fields (e.g. pattern
recognition and text classification), the prediction methods for
purchase behavior are overconcentration of the linear models,
especially linear discriminant analysis and logistic regression
analysis. On the other hand, as more and more information
and communication technologies (ICT, e.g. POS and sensor) are
introduced into retail, marketing and management to collect
business data, the volumes of data are increasing in exponential
growth. Analysis based on linear models are insufficient to satisfy
the requirement of academics and practitioners any more, and
machine learning techniques have been increasingly attracted
us to conduct them as an alternative approach for knowledge
discovery and data mining. With regard to these issues, this paper
employs two representative machine learning methods: Bayes
classifier and support vector machine (SVM) and investigates
the performance of them with the data in the real world.

Index Terms—Purchase Behavior, RFID, In-store Behavior,
Machine Learning, Multivariable Normality Test

I. INTRODUCTION

Prediction of costumers’ purchase behavior has been dra-

matically investigated over half a century, and completely

recognized as one of the most significant research topics in

consumer behavior researches. While we attempt to measure

response of purchase intention to the contextual factors such

as customers’ age, gender and income, product price and sale

promotion [1][2], most of business models are basing on a

linear equation to estimate weight of these factors due to the

linear equation is not only intuitive for other academics to

compare and replicate but also luminous to explain the results

for business practitioners. Nevertheless, comparing with other

research fields (e.g. pattern recognition and text classification),

the prediction methods for purchase behavior are overcon-

centration of the linear models, especially linear discriminant

analysis [3] and logistic regression analysis [1]. Including the

limitation of being difficult to get more predictive accuracy,

the prediction results are also easy to converge towards the

tradition conclusions, which would lead to a lack of revealing

customers’ characteristic and diversity. On the other hand,

due to the linear models are only able to distribute following

monotonic increasing or decreasing either, it is unavailable to

exactly represent complex relation (exc. linear separability)

between purchase behavior and explanatory variables. Fur-

thermore, as more and more information and communication

technologies (ICT, e.g. POS and sensor) are introduced into

retail, marketing and management to collect business data

[4][5][6][7], the volumes of data are increasing in exponential

growth. Analysis based on linear models are insufficient to

satisfy the requirement of academics and practitioners any

more, and machine learning methods have been increasingly

attracted us in the last two decades, to conduct them as an

alternative approach for knowledge discovery and data mining.

With regard to these issues, this paper employs two repre-

sentative machine learning methods: Bayes classifier [8] and

support vector machine (SVM) [9], and investigates the per-

formance of them with the data in the real world. The data are

collected by a shopping path research in supermarket which

is one of the hottest research topic in consumer behavior.

In conformity to our previous study [10], SVM is employed

to compare with Bayes classifier and other linear models in

order to demonstrate the variations of purchase intention over

stay time. In addition, a measurable and cumulative factor -

stay time is introduced to association with the age, which is

extracted from the in-store behavior data. Compared with the

traditional forecast models, such as linear regression analysis

and Bayes classifier, SVM provides a significant improvement

in the forecasting accuracy of purchase behavior (from around

80% to approximately 90%). Second, multivariate analysis is

applied to statistically process the massive amount of data

on customers’ stay time to make kernel selection easier for

the classification task of the SVM. Basically, multivariate or

multivariable normality testing yields the insight information

of data. The omnibus normality test proposed by Doornik and

Hansen [11] is adopted within the SVM theory to choose the

automatic kernel selection for consumer purchasing behavior

extraction.
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Fig. 1. Overview of the collection procedure for RFID data on customer shopping in a supermarket

Fig. 2. Layout of the supermarket

The rest of the paper is organized as follows. In Section II,

the framework of our RFID system and the preprocessing stage

of RFID data are presented. The SVM and kernel trick are

explained in Section III. Experimental results and multivariate

omnibus normality tests are reported in Section IV. The results

and conclusions are summarized at the end of this paper, in

Section V.

II. OVERVIEW OF SYSTEM AND RFID DATA

A. Collection of RFID Data

We now demonstrate how this system can be used with

actual customer in-store behavior data, using customer move-

ment data gathered at a mid-sized supermarket in Japan. In

this experiment, the shopping carts used by customers were

equipped with RFID tags (Fig. 1(a)) which made it possible

to precisely track in-store customer movements. The RFID

system consists of 5 steps as shown in Fig. 1.

(a) RFID tags with unique IDs are individually attached to

the shopping carts.

(b) As the customers walk through the aisles with this

cart, the RFID tag emits a signal each second, and the

information about the cart’s position within the store can

then be expressed as coordinates (x, y).

(c) These signals are received and sent to the back-end

server via an RFID receptor located at the bottom (or

the top) of the shelves.

(d) In the back-end server, a tracking system is employed

to identify the signals and save them as raw data.

(e) By using an additional preprocessing system in the back-

end server, the raw data are transformed into RFID data

in XML form.

In addition to customers’ movement data, floor layouts

and purchasing histories were also gathered. The floor layout

within the store was divided into 16 sections (Fig. 2). Some

of those sections (e.g. Household Goods and General Foods)

had subsections, and there were 28 subsections in total.
To record the customer’s trip, the layout is reproduced into

a picture with x and y coordinates on the scale of 15.7 pixels

per meter. When the customer passes a certain area of the

supermarket with a shopping cart equipped with an RFID tag,

the information about her position can be received by the RFID

receptor around the shelves and then transformed into a pixel

point in our dataset using the matching floor layout. The RFID

tag number attached to the shopping cart, the shopping date,

time stamp, x and y coordinates of that time stamp, section of

that coordinate and elapsed time are recorded. Table I shows

the sample data obtained using our RFID system.
When the customer comes to the checkout register and

makes a purchase, data are recorded and entered into our

dataset. The dataset contains the shopping details as shown in

Table II. Data include customer name, shopping date, type of

item purchased, volume and unit price, totaling seven columns

in the table.

We define this process from the time the customer enters

the store until the purchase is completed as a basic unit of a

customer’s in-store behavior and assign a unique ID to identify

it. In addition, by using this ID, the customer’s purchase

behavior obtained from the POS data are then linked to in-store

behavior. After pre-processing the RFID and POS data, the

data contained 5661 shopping units (sale transactions), with

which 2847 customers could be tracked.

B. Measuring Range of the Fish Department
The experiment was carried out in a typical supermarket

in Japan. In contrast to the previous studies, we focused on

in-store customer behavior within a certain area instead of the
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TABLE I
RFID DATA OF THE MOVEMENT

Customer Name RFID Tag No. Date Time X Y Selling Area Elapsed Time
Anna T001 2009/05/11 12:01:12 91 542 Entrance 1

.

.

.
Anna T001 2009/05/11 12:03:51 79 87 Fish 1
Anna T001 2009/05/11 12:03:52 85 88 Fish 1
Anna T001 2009/05/11 12:03:53 86 89 Fish 2
Anna T001 2009/05/11 12:03:55 87 87 Fish 1
Anna T001 2009/05/11 12:03:56 95 88 Fish 1
Anna T001 2009/05/11 12:03:57 99 88 Fish 1
Anna T001 2009/05/11 12:03:58 98 88 Fish 10
Anna T001 2009/05/11 12:04:08 92 88 Fish 1
Anna T001 2009/05/11 12:04:09 91 89 Fish 1

.

.

.
Anna T001 2009/05/11 12:12:05 319 511 Register 1

TABLE II
DETAIL OF THE POS DATA

Customer Name Date Time Item Name Item Category Volume Amount
Anna 2009/05/11 12:12:30 Cabbage Vegetable 1 150
Anna 2009/05/11 12:12:30 Banana Fruit 1 198
Anna 2009/05/11 12:12:30 Sashimi Fish 2 596
Anna 2009/05/11 12:12:30 Pork Meat 1 232

Fig. 3. Visualization of stay time from shopping trip [12]

Fig. 4. Sample calculation of stay time

whole supermarket. Since fish is featured much more promi-

nently on the Japanese plate, we selected the fish department

as the experimental object. The measuring range, with a length

of 16 meters and a width equals 12 meters, is represented as

the shaded pattern in Fig. 2.

C. Definition of stay time

In this section, we explain the definition of stay time, i.e.,

the amount of time customers spent in the fish department.

For a given customer, the RFID tag tracks the shopping trip

from the time of entering the store to making a purchase at

the checkout register. Fig. 3 shows a density estimation of

stay time using one customer’s shopping trip [12]. The figure

was drawn using line segments to connect coordinate points

of the customer’s trip, which was tracked per second, and

is combined with the stay time distribution expressed by the

density estimation method. From this figure, we can see that

using only the customer’s shopping trip can make it difficult

to know how a customer spend time in a certain area.

In this section, we explain the definition of stay time. For

instance, Anna stayed 30 s in position A (xA, yA), next moved

to position B (xB , yB) and stayed 50 s, and then moved to

position C (xC , yC) and stayed 20 s (see Fig. 4). There were

100 s of total stay time in Anna’s shopping. Thus, if Anna

remained in position (xi, yi) for ti seconds, then the time spent

by Anna in the supermarket is expressed as follows:

T =
n∑

i=0

ti (1)

where the notation ti denotes the “Elapsed Time” shown in

Table I. Furthermore, making an addition to Eq. (1), only if

she comes into the fish selling area is the position accepted.

Therefore, the stay time TFish that the customer spent in the

fish department is defined as follows:
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TFish =

n∑
i=0

ti, (2)

ti =

{
Elapsed Time, if position in fish department.
0, otherwise.

By using Eq. (2), each individual customer’s stay time spent

in the fish department is calculated.

III. METHODOLOGY

A. Support Vector Machine

The support vector machine (SVM) belongs in the su-

pervised learning theory group, which is comparatively very

effective for classification, regression and clustering tasks.

Compared to other learning algorithms, an SVM can effec-

tively handle high-dimensional data space due to its unique

kernel component. Different kernel functions can easily gen-

erate a set of decision functions, even when the number of

dimensions is greater than the total number of samples. In the

data modeling phase, the SVM identifies the small number of

data points, called support vectors (SVs), that are closest to the

hyperplane. Therefore, the SVM acts in the learning space as a

memory-efficient learning algorithm. In this section, we briefly

summarize SVM theory. Let us consider l, an independent and

identically distributed sample: (x1, y1), · · · , (xl, yl), where xi

for i = 1, · · · , l and yi = {+1,−1} is the class label for data

point xi. Our aim is to find a decision function f with the

property f(xi) = yi, ∀i.

yi[(w · xi) + b] ≥ 1, ∀i. (3)

Basically, a separating hyperplane often does not exist. To

allow for the possibility of examples violating Eq. (3), Vapnik

introduced the slack variables ξi

ξi ≥ 0, ∀i (4)

to get

yi[(w · xi) + b] ≥ 1− ξi, ∀i. (5)

Therefore, the optimization problem becomes:

τ(w, ξ) =
1

2
(w ·w) + γ

l∑
i=1

ξi. (6)

The constraints are described in Eqs. (4) and (6). Vapnik then

introduced the Lagrange multiplier αi and used the Kuhn-

Tucker theorem of optimization theory. Therefore, we can

calculate the weight vector following Eq. (7) with nonzero

coefficients αi only where the corresponding example (xi, yi)
precisely meets the constraint Eq. (5).

w =
l∑

i=1

yiαix. (7)

These nonzero coefficients are called support vectors(SVs);

SVM then ignores the remaining data vectors in the testing

phase of the unseen instances. As a result, the SVM can pro-

vide a faster solution compared to other learning algorithms.

(a) Linear classification

(b) Nonlinear classification

Fig. 5. Typical classifications generated by applying different kernel tricks

The constraint Eq. (5) is satisfied automatically (with ξi = 0),

and it does not appear in expansion Eq. (7). The coefficients

αi are found by solving the following quadratic programming

problem. Maximize

W (α) =
l∑

i=1

αi − 1

2

l∑
i,j=1

αiαjyiyj(xi · xj) (8)

subject to

0 ≤ αi ≤ γ, i = 1, · · · , l and

l∑
i=1

αiyi = 0. (9)

Therefore the decision function can be written as

f(x) = sgn

[
l∑

i=1

yiαi · (xi · xj) + b

]
. (10)

To obtain better general decision surfaces, one can first non-

linearly transform a set of input vectors x1, · · · , xl into a

high-dimensional feature space. Therefore the final decision

function becomes:

f(x) = sgn

[
l∑

i=1

yiαi ·K(xi · xj) + b

]
(11)

where K(xi · xj), called the “kernel,”is the most important

component of SVM theory.

B. Linear/Nonlinear Classification

In the field of classification, the purpose of statistical learn-

ing algorithms is to construct a hyperplane from the observed
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TABLE III
COMPARISON OF FORECAST METHODS

Forecast Method Accuracy Accuracy(P = 1)
Linear Discriminant Analysis 81.09% 81.29%
Logistic Regression Analysis 80.75% 81.01%

Baye Classifier 81.49% 97.85%
Support Vector Machine 90.63% 99.12%

data points, and separate as many as possible into two different

categories. To facilitate this purpose, SVM provides a set of

hyperplanes including two margin hyperplanes, individually.

The optimal hyperplane is the one that has the largest distance

between two margin hyperplanes. As shown in Fig. 5, the

black line denotes the optimal hyperplane, and is labeled

maximum-margin hyperplane. The green and blue lines denote

the two margin hyperplanes for either category, which can be

called support vectors.

The thought notion of an optimal hyperplane was first

suggested by Vapnik and applied to linear classification (Fig.

5(a)). He subsequently proposed an algorithm for nonlinear

classification (refer to Fig. 5(b)) by using the kernel trick to

maximize the gap between margin hyperplanes, which is the

most important aspect of SVM theory. In addition to being

applied to linear classification, several typical kernels applied

in nonlinear classification have been proposed in SVM as

follows:

• Linear kernel: K(xi · xj) = (xi · xj)
• Polynomial: K(xi · xj) = (xi · xj + 1)d

• Gaussian radial basis function: K(xi · xj) = exp(−γ ‖
xi − xj) ‖2, for γ > 0, sometimes parametrized using

γ = 1
2σ

2

• Hyperbolic tangent: K(xi ·xj) = tanh(κxi ·xj + c), for

some (not every) κ > 0 and c > 0

IV. EXPERIMENTAL SETUP

A. Explanation of Variables

The SVM procedure mentioned in Section III is a binary

classification to separate the customers into 2 classes. The re-

sponse variable is the purchase behavior, defined as a Boolean

variable 0/1, which denotes the unpurchased and purchased

modes. Two explanatory variables are also employed in the

SVM. One is age, which denotes the demographic character-

istic of the customers, and the other is stay time, which denotes

their behavioral attributes.

B. Accuracy Comparison

In this section, we compare the forecast accuracy of SVM

mentioned in Section III-A with that of linear discriminant

analysis, logistic regression analysis and a Bayes classifier.

Our experimental data were recorded from May 11,2009

to June 15, 2009. As such, we selected the data from May

11,2009 to June 10, 2009 as the training data (including 4776

sale transactions), assigning the remaining 5 days’ worth of

data as the testing data (including 885 sale transactions).

Table III shows the results of each forecast method. The

SVM algorithm was implemented in Matlab 1. The forecast

procedures of linear discriminant analysis and logistic regres-

sion analysis were encoded using the programming language

R2. The results of Bayes classifier is were taken from one of

our previous studies [8]. The column of “Accuracy” denotes

the hit ratio for the whole data set, both in the purchased

and non-purchased groups. The forecast accuracy of SVM

was only lightly higher than that of the other models. In the

column of “Accuracy(P = 1)” which denotes the hit ratio

only for the data in the purchase state, SVM was much more

accurate than the linear classification methods, lightly higher

than Bayes classifier.

C. Multivariate Omnibus Normality Test

When the observed data are applied to an SVM to find an

appropriate kernel trick for mapping the observed data, the

multivariate normality test becomes necessary. For this issue,

Doornik and Hansen suggested a convenient version of the

omnibus test for normality [11].

If the input has n observations along a p-dimensional vector,

they suggested that a p× n matrix X ′ = {x1, x2, · · · , xn} be

applied. The mean and covariance are x̄ = 1
n

∑n
i=1 xi and

S = 1
n

∑n
i=1(xi − x̄)(xi − x̄)′, respectively. Then, create a

matrix V the variances on the diagonal:

V = diag(σ̂2
1 , · · · , σ̂2

p), (12)

and form the correlation matrix C = V −
1
2SV −

1
2 . Define

the p × n matrix Y ′ = y1, · · · , yn from the transformed

observations:

yi = HΛ−
1
2H ′V −

1
2 (xi − x̄), (13)

with Λ = diag(λ1, · · · , λp), the matrix with the eigenvalues of

C on the diagonal. The columns of H are the corresponding

eigenvectors, such that H ′H = Ip and Λ = H ′CH . Using

population values for C and V , a multivariate normal can thus

be transformed into an independent standard normal; using

only approximated sample values. Now, we can compute the

univariate skewness and kurtosis for each of the p-transformed

vectors of n observations. Defining B′1 = (
√
b11, · · · ,√b1p),

B′2 = (
√
b21, · · · ,√b2p) and ı as a p-vector of ones, the test

statistic:

Ea
p =

bB′1B
′
1

6
+

n(B2 − 3ı)′(B2 − 3ı)

24
ã χ2(2p). (14)

The proposed multivariate statistic is:

Ep = Z ′1Z1 + Z ′2Z2χ
2(2p) ãpp χ2(2p) (15)

where Z ′1 = (z11, · · · , z1p) and Z ′2 = (z21, · · · , z2p) are

determined by Eqs. (16) and (17) given in Appendix D. After

transformation of the data to approximated and independently

standard normals, the univariate test was applied to each

dimension.

1The procedures and results of SVM are expressed in Appendix C.
2The procedures and results of linear discriminant analysis and logistic

regression analysis are expressed in Appendix A and Appendix B, respectively
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TABLE IV
SVM PERFORMANCES WITH DIFFERENT KERNEL TRICKS

Kernel Type Linear Polynomial (p=2, .5) RBF (σ=0.2 ..1.0)
Parameter Value - p=2 p=3 p=4 p=5 σ=0.2 σ=0.4 σ=0.6 σ=0.8 σ=1.0

Accuracy 81.21% 89.32% 89.67% 89.47% 89.79% 89.42% 89.90% 90.02% 90.14% 90.63%
Modeling (sec) 42.73 166.34 198.84 268.80 266.20 2.01 1.65 1.31 1.25 1.15
Evaluating (sec) 0.04 0.03 0.03 0.01 0.01 0.08 0.09 0.08 0.14 0.09
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Fig. 6. Frequency of explanatory variables

This research employed multivariate analysis to statistically

process the massive amount of customer behavior data to facil-

itate kernel selection during the classification task of the SVM.

A multivariate or multivariable normality test examined the

data characteristics. We use this information in our experiment

to choose the linear or non-linear kernel for SVM.

Before applying the multivariate normality test to our data,

we constructed a bar graph to see the nature of individual

attributes. As shown in Fig. 6, the age variable was normally

distributed (Fig. 6(a)), but stay time was not (Fig. 6(b)).

Therefore, the multivariate test was necessary to investigate

on our data.

According to the results shown in Table IV, three types of

kernelsv(Linear, Polynomial and RBF) were employed to test

our data (Multivariate Omnibus Normality Test Performance

was implemented in Matlab). If the kernel used was a Gaussian

radial basis function (RBF), the optimal hyperplane could be

constructed with parametrization using σ = 1.0. We observed

from the experiments that the classification accuracy could

improve with the higher RBF kernel parameters. However, we

stopped at σ = 1.0 to follow the classification style of the

SVM application.

V. CONCLUSIONS

In this paper, we have suggested a method for extracting

consumer purchasing behavior. Utilizing RFID data acquired

from individuals in a Japanese supermarket, we examined

several important methodological issues related to the use

of RFID data in support vector machines (SVMs) to predict

purchasing behavior.

First, we provided a time perspective on shopping in a

certain area instead of the entire grocery store. In contrast

to shopping paths, customer stay time can help us improve

our understanding of in-store behavior within a small range,

which is one of the most important factors impacting one’s

purchasing decision. Stay time was also a meaningful variable

for the retailers, enabling them better understand the purchas-

ing behavior of specific items, rather than of the sales amount

for the whole store. Second, we used SVM to apply to forecast

purchase behavior, which was independent of the distribution

and relationship of variables even though they were linear or

nonlinear aspect of variables. In the numerical example, SVM

demonstrated better forecasting performance related to linear

discriminant analysis, logistic regression analysis and even

Bayes classifier. Finally, because the variables of age and stay

time had different distributions, we conducted a multivariate

omnibus normality test on the data, and an optimal hyperplane

was constructed when the RBF was applied as the kernel trick.

We hope to build upon this work to the highest accuracy level

possible for consumer behavior extraction.

ACKNOWLEDGMENT

This work was supported in part by MEXT Strategic Project

to Support the Fomation of Research Bases at Private Univer-

sities (FY2014-2019) and MEXT Grant-in-Aid for Scientific

Research (A) Grant Number 16H02034 (FY2016-2021).

REFERENCES

[1] Peter M. Guadagni and John D. C. Little, “A Logit Model

of Brand Choice Calibrated on Scanner Data”, Marketing
Science, Vol.2, No.3, pp.203-238, 1983.

[2] Sunil Gupta, “Impact of Sales Promotions on When,

What, and How Much to Buy”, Journal of Marketing
Research, Vol.25, No.4, pp.342-355, 1988.

23



[3] Thomas S. Robertson and James N. Kennedy, “Predic-

tion of Consumer Innovators: Application of Multiple

Discriminant Analysis”, Journal of Marketing Research,

Vol.5, No.1, pp. 64-69, 1968.

[4] Herb Sorensen, “The Science of Shopping”, Marketing
Research, Vol.15, pp.30-35, 2003.

[5] Jeffrey S. Larson, Eric T. Bradlow and Peter S. Fader,

“An Exploratory Look at Supermarket Shopping Paths”,

International Journal of Research in Marketing, Vol.22,

No.4, pp.395-414, 2005.

[6] Sam K. Hui. Eric T. Bradlow and Peter S. Fader, “Testing

Behavioral Hypotheses using an Integrated Model of

Grocery Store Shopping Path and Purchase Behavior”,

Journal of Consumer Research, Vol.36, No.3, pp.478-

493, 2009.

[7] Katsutoshi Yada, “String Analysis Technique for Shop-

ping Path in a Supermarket”, Journal of Intelligent In-
formation Systems, Vol.36, No.3, pp.385-402, 2011.

[8] Yi Zuo and Katsutoshi Yada, “Application of Bayesian

Network Sheds Light on Purchase Decision Process

basing on RFID Technology”, 2013 IEEE 13th ICDM,

pp.242-249, 2013.

[9] Vladimir Vapnik, The Nature of Statistical Learning
Theory, Springer-Verlag, 1995.

[10] Yi Zuo, “Prediction of consumer purchase behavior using

Bayesian network: an operational improvement and new

results based on RFID data”, Int. J. Knowledge Engineer-
ing and Soft Data Paradigms, Vol. 5, No. 2, pp.85-105,

2016.

[11] Jurgen A. Doornik and Henrik Hansen, “An Omnibus

Test for Univariate and Multivariate Normality”, Oxford
Bulletin of Economics and Statistics, Vol.70, Issue Sup-

plement s1, pp.927-939, 2008.

[12] Shinya Miyazaki, Takashi Washio and Katsutoshi Yada,

“Analysis of Residence Time in Shopping Using RFID

Data – An Application of the Kernel Density Estimation

to RFID”, 2011 IEEE 11th International Conference on
Data Mining, pp.1170-1176, 2011.

APPENDIX A

LINEAR DISCRIMINANT ANALYSIS

R Console� �
> result<-glm(Purchase∼Age+Time)

> summary(result)

Coefficients:

Estimate Std.Error t value Pr(>|t|)

(Intercept) 6.950e-01 2.232e-02 28.161 <2e-16 ***

Age -3.831e-05 3.684e-04 -0.104 0.917

Time 7.957e-04 3.775e-05 24.978 <2e-16 ***

------------

Signif. 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’

� �

APPENDIX B

LOGISTIC REGRESSION ANALYSIS

R Console� �
> result<-glm(Purchase∼Age+Time, family=binomiial)

> summary(result)

Coefficients:

Estimate Std.Error t value Pr(>|t|)

(Intercept) 2.756e-01 1.651e-01 -2.445 0.0145 *

Age -5.739e-03 2.695e-03 -1.673 0.0943 .

Time 1.227e-02 6.821e-04 23.393 <2e-16 ***

------------

Signif. 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’

� �

APPENDIX C

SUPPORT VECTOR MACHINE

Matlab Command Window� �
Number of variables: 2

Sample size: 5661

-------------------------------------------------------------------

MV omnibus test statistic: 3807.942819

Equivalent degrees of freedom: 4.000000

P-value associated to the Royston’s statistic: 0.000000

Lower critical value associated to the Royston’s statistic: 0.484419

Upper critical value associated to the Royston’s statistic: 11.143287

With a given significance = 0.050

Data analyzed do not have a normal distribution.

-------------------------------------------------------------------
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APPENDIX D

MULTIVARIATE OMNIBUS NORMALITY TEST

The transformation for the skewness
√
b1 into z1 is as

follows:

β =
3(n2 + 27n− 70)(n+ 1)(n+ 3)

(n− 2)(n+ 5)(n+ 7)(n+ 9)
,

ω2 = −1 + 2(β − 1)
1
2 ,

δ =
1

[log(
√
ω2)]

1
2

,

y =
√
b1

[
ω2 − 1

2

(n+ 1)(n+ 3)

6(n− 2)

] 1
2

,

z1 = δlog
[
y + (y2 + 1)

1
2

]
. (16)

The kurtosis b2 is transformed from a gamma distribution

to χ2, which is then translated into standard normal z2 using
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the Wilson-Hilferty cubed root transformation as follows:

δ = (n− 3)(n+ 1)(n2 + 15n− 4),

a =
(n− 2)(n+ 5)(n+ 7)(n2 + 27n− 70)

6δ
,

c =
(n− 7)(n+ 5)(n+ 7)(n2 + 2n− 5)

6δ
,

k =
(n+ 5)(n+ 7)(n3 + 37n2 + 11n− 313)

12δ
,

α = a+ b1c,

χ = (b2 − 1− b1)2k,

z2 =

[( χ

2α

) 1
3 − 1 +

1

9α

]
.

(17)

25


