
Model Checking a Client-Side Micro Payment
Protocol

Kaylash Chaudhary
School of Computing, Information Mathematical Sciences

University of the South Pacific, Fiji

Email: kaylash.chaudhary@usp.ac.fj

Ansgar Fehnker
Formal Methods and Tools

University of Twente, Enschede, Netherlands

Email: ansgar.fehnker@utwente.nl

Abstract—Virtual payment systems overcome the drawbacks
such as processing and operational cost of the traditional payment
system. The main aim of the virtual payment system is to
provide efficient services in terms of cost. Online payment using
credit card is one of the most expensive of all payment means.
This gives advantage to micropayment systems where only small
amounts are used for e-commerce. Payment which are small
will be costly if paid through credit card. Therefore, there are
several micropayment systems that exist and some have been
proposed. One of the proposed micropayment system that this
paper will talk about is Netpay. We will do model checking to
check the correctness of this payment system and to see whether
the protocol designers property claim is valid. Correctness is
important in payment systems because money is involved in it,
therefore the protocol needs to be validated.

This paper examines the client-side version of the Netpay
protocol and provides its formalization as a CSP model. The
PAT model checker is used to prove three properties essential
for correctness: impossibility of double spending, validity of an
ecoin during the execution and the absence of deadlock. We
prove that the protocol is executing according to its description
based on the assumption that the customers and vendors are
cooperative. This is a very strong assumption for system built to
prevent abuse, but further analysis suggests that without it the
protocol does no longer guarantee all correctness properties. We
compare the two variation of the protocol with each other and
with the properties claimed by the protocol designers.

I. INTRODUCTION

With the growth of internet, most goods are sold online. Vir-

tual payment systems evolved to cater for online transactions.

Credit card is one method for performing online transaction

but it can be expensive for payments with small amounts.

Micropayment technologies emerged to facilitate payments

with smaller amounts.

There are many micro-payment systems available for users

to buy goods online such as Netpay [8], Millicent [9], Micro-

mint [14], Payword [14], MiniPay [11], Micro-iKP [10] and

POPCORN [13]. There are also many micro-payment systems

proposed for content sharing in peer to peer networks [3] [4],

[16], [17] and [18].

Since micropayment systems deals with online payment, the

protocol should be secure. Security is one of the essential prop-

erty of online payment systems. A payment system should not

allow a customer to double spend. Modeling and verification

has been performed to verify this double spending property on

other protocols such as Bitcoin [1][2]. We have proved that

there is no double spending in server-side Netpay protocol

[5]. Client-side Netpay is a variation of the Netpay protocol.

The difference between the two is e-wallet location. In the

client-side, the e-wallet is located at the customer side. Due

to e-wallet location, the transactions are different. In server-

side, the vendor has to ask for e-wallet location from broker

and then request the e-wallet from the vendor. In client-side,

the e-wallet stays at the customer but there is touchstone that

is used to verify e-coins which floats from broker to vendor

and then from vendor to vendor. Hence, the difference between

the two modeling exercise.

This paper models the client-side Netpay using CSP. The

model in this paper covers the handling of e-coins. The parts

of the protocol that deals with ecoin redemption and digital

signature is excluded from the model. We assume that the

correctness of the cryptographic hash function is guaranteed

independently. We will prove that the protocol can guarantee

the touchstone location as recorded by the customer is correct

at the end of the transaction , that the customer can not spend

more than the e-coin is worth, and finally, that the protocol is

non-blocking.

Section II introduces the server-side Netpay protocol. CSP

language is described in section III. Section IV shows the

description of the Netpay protocol using the CSP language.

Correctness of this protocol is discussed in Section V. This

paper concludes with discussion for future research in section

VI.

II. THE NETPAY PROTOCOL

The Netpay protocol with server-side e-wallet was proposed

by Dai et.al. [6]. It has three types of e-wallets: client side,

server-side and cookie-based e-wallet [7]. There are three

parties involved in this protocol; customer, vendor and broker.

It is assumed that the broker and vendors are honest and are

trusted by the customers who may not be honest. To use

the protocol, the customers and vendors need to register by

opening an account and depositing funds with the broker.

The broker is responsible for registration, e-coin generation,

debiting and crediting accounts for customers and vendors

respectively. The payment is between customers and vendors.

Previous work has modeled and verified some properties of

server-side Netpay [5]. The difference between the server-side

and the client-side Netpay is the location of the e-wallet.

2016 3rd Asia-Pacific World Congress on Computer Science and Engineering

978-1-5090-5753-5/16 $31.00 © 2016 IEEE

DOI 10.1109/APWC.on.CSE.2016.24

90

Netpay uses a number of cryptography and micro-payment

terminologies such as:

• One-way Hash Function: Netpay uses this function to

generate and verify e-coins. In [7] MD5 was used, but it

could be replaced by more secure SHA-1.

• E-coin: The one-way hash function is applied repeatedly

to a seed to generate a series of paywords called e-coin.

The paywords are represented in reverse order with the

seed at the end. The length of the e-coin determines its

value.

• E-wallet: An e-wallet is a database to store e-coins.

• Seed: It is a randomly selected value used for e-coin

generation.

• Touchstone: This is the first payword of the e-coin. It is

used to verify e-coins.

Using the one way hash function h, an e-coin W1, ...,Wn

is constructed by applying the hash function n + 1 times to

a seed i.e. W0 = h(W1),W1 = h(W2), ...,Wn = h(Wn+1)
where Wn+1 is the seed, and W0 the touchstone.

The remainder of this section will describe the four basic

types of transactions in this protocol. It is assumed that each

customer and vendor have a unique ID.

Customer-Broker Transaction The customer sends

an e-coin request with parameter n to the broker,

who generates e-coins of length n. Each chain has a

unique e-coin ID. The broker stores this information

in its database, and sends the e-coin ID to the

customer.

Customer-Vendor Transaction
If a customer wishes to buy something from the

vendor, the customer sends an e-coin ID. The vendor

checks if it has the e-coin and verifies it. If the

verification is successful, the customer is notified.

If the vendor does not have the e-coin, it requests

the location from the broker. The broker will reply

with the location of the e-coin, the vendor requests

this e-coin from that vendor or broker. Initially, the

broker will have the e-coin and after that it will be

transferred from one vendor to another.

Vendor-Vendor Transaction This transaction occurs

when one vendor requests an e-coin from another

vendor.

Vendor-Broker Transaction
Vendors need to redeem the e-coins spent by cus-

tomers. The vendor sends the e-coin IDs, touch-

stones, customer IDs, vendor ID, e-coins and amount

to the broker. The broker will verify e-coins and

credit the corresponding amount to the vendors ac-

count if the spent e-coins are valid. This paper

focuses on the spending of e-coins, and omits re-

demption of e-coins from the model.

a) Properties of the Netpay Protocol: This paper con-

siders three important properties. The first is on the validity

of e-coins. Since there will be transfer of an e-coin from one

vendor to another, an e-coin should remain valid in this chain

of transfer. The second is on preventing double spending. This

protocol prohibits a customer to double spend an e-coin at a

different or same vendor. The last property is to show absence

of deadlocks.

III. COMMUNICATING SEQUENTIAL PROCESSES (CSP)

This paper will use CSP to model the server-side Netpay

protocol. CSP is a formal language which is used for describ-

ing interaction between different systems using process algebra

[12]. Systems are modelled in CSP as processes and events. A

process represents a component of a system whereas an event

represents the communication between different components

or processes. We have used the following syntax for defining

processes in this paper. In order to illustrate the syntax,

suppose we have two processes (P and Q), two events (a and

b) and a channel c.

• a -> P : a is an event which is performed by a process

and then behaves as process P .

• P|||Q : process P and Q are interleaving processes

and these processes perform actions independently.

• c!x -> P : a process sends a message with parameter

x to another process by synchronizing on channel c and

then behaves like process P .

• c?y -> P : a process receives a message with param-

eter y sent by another process on synchronized channel

c and then behaves like process P .

• a -> P[]b -> Q : a process either performs event a
and behaves as P or performs event b and behaves as Q.

Channels are used in CSP to pass message to different

processes. In our model, we have used synchronous channels.

A sender cannot transmit a message unless the receiver is

ready to accept it. There are different tools available which

uses CSP as language for model checking. One such tool is

Protocol Analysis Toolkit (PAT).

PAT is a tool which supports composing, simulating and

verifying different systems [15]. It supports different modeling

languages and one such language that we have used to

model Netpay protocol is CSP. PAT allows to verify various

properties for a protocol.

IV. DESCRIPTION OF NETPAY PROTOCOL USING CSP

This section provides models and description for the Server-

Side Netpay protocol. The three parties of the protocol: cus-

tomer, vendor and broker have been modeled as one process

each. For simplicity we assume that there is only one broker,

while there can be many customers and vendors.

A. Customer Process

Table 1 shows the customer process for the customer CID.

Each customer has its own e-wallet. The e-wallet, EWALLET,

stores the ecoin ID, the amount and the touchstone location.

Recall, that an e-coin is constructed by applying hash function

to a seed. Each payword in Netpay is accompanied by an index

to record the number of unspent paywords; the amount. The

amount will be abstracted in this paper as either ISPOSITIVE

or ISZERO. This is because the properties shown in this paper

91

are independent of hash function and the exact amount. There

are two major tasks that a customer performs; buying e-coins

from the broker and spending e-coins at a vendor.

The first task for a customer is to buy ecoins from broker on

the BuyCoin channel with parameter customer ID, CID. Since

the ewallet will be empty initially, this will be the only enabled

event. This further meets the precondition, CUS STATUS[CID]

== IDLE, of this event that is the customer should be IDLE to

send a message on this channel. After sending this message,

the customer will change to the BUYCOIN state. The customer

will be in this state until the broker replies on the SellCoin
channel. When the broker replies, the customer adds the ecoin

ID, amount and the broker ID to EWALLET. The state of the

customer changes to IDLE.

The second task models spending ecoins at a vendor (Table

1, lines 24 to 31). If customer has e-coins and is in the

IDLE state, it can buy goods from a vendor on channel

Spend, which will synchronize with one of the vendors. The

channel has four parameters: customer ID, e-coin ID, amount

and touchstone location. After this event, the customer will

change the state to SPENDING. The vendor will reply either

on channel, Approval or Disapproval. If there are unspent

coins, the customer will update its e-wallet by setting the

touchstone location to the vendor ID who replied on channel,

Approval (Table 1, lines 33 to 47). If the payment was not

accepted, the customer will receive reply on Disapproval. In

either case, the state of the customer will change to IDLE.

Note, that the customer is the non-trusted party in this

protocol. The customer can spend an ecoin as often as it wants

to. The vendor and broker should be able to prevent a customer

from double spending.

B. Broker Process

The broker process, Broker(BID), shown in Table 2 models

the broker with unique broker ID. The broker has a database,

BROKERDB, which stores the ecoin ID and amount. The broker

can be any of the three states; IDLE, BUYCOIN or REQSTONE.

The state of the broker is tracked using variable BRO STATUS.

Variables Beid, Bvid and Bcid are used to store intermediate

results while generating e-coins or replying to request from

customers or vendors.

The broker performs two tasks. The first is generation of

ecoins. The broker will receive request from a customer to

generate ecoins on channel BuyCoin. This can only happen

if the broker is in IDLE state, i.e. if BRO STATUS == IDLE. The

state of the broker changes to BUYCOIN. The broker replies

on channel SellCoin with parameters ecoin ID and amount.

This event changes the state of the broker process to IDLE.

The second task is to provide the touchstone to vendor.

This will only happen when the broker generates ecoins. The

broker ID will be used as the touchstone location for all fresh

ecoins that has not been partially spent. A vendor requests

touchstone location on channel ReqTouchStone with two

parameters; vendor ID and ecoin ID. The broker searches the

database, BROKERDB, and stores the result in Beid. The state

of the broker changes to REQSTONE. The broker replies with

Table 1 Customer Process
Customer(CID) = [CUS_STATUS[CID] == IDLE &&

(||y:{0..(MAXCOINS-1)}@(EWALLET[CID][y][0]==-1))]
BuyCoin!CID

{
5 CUS_STATUS[CID] = BUYCOIN

}->Customer(CID)
[][CUS_STATUS[CID] == BUYCOIN]
SellCoin[CID]?eid1.bid

{
10 var index = 0;

while(index < MAXCOINS)
{

if (EWALLET[CID][index][0] == -1)
{

15 EWALLET[CID][index][0] = eid1 ;
EWALLET[CID][index][1] = ISPOSITIVE;
EWALLET[CID][index][2] = bid;
index = MAXCOINS;

}
20 index = index + 1;

}
CUS_STATUS[CID]=IDLE

}->Customer(CID)
[]([]x:{0..VENDORS-1};z:{0..MAXCOINS-1}

25 @([CUS_STATUS[CID] == IDLE &&
EWALLET[CID][z][0]!=-1]
Spend[x]!CID.EWALLET[CID][z][0].
EWALLET[CID][z][1].EWALLET[CID][z][2]

{
30 CUS_STATUS[CID]=SPENDING

}->Customer(CID)))
[][CUS_STATUS[CID] == SPENDING]
Approval[CID]?vid.eid1.amt

{
35 var index = 0;

while(index < MAXCOINS)
{

if(EWALLET[CID][index][0]==eid1)
{

40 EWALLET[CID][index][1] = amt;
EWALLET[CID][index][2] = vid;
index = MAXCOINS;

}
index = index + 1;

45 }
CUS_STATUS[CID]=IDLE

}->Customer(CID)
[][CUS_STATUS[CID] == SPENDING]
Disapproval[CID]?vid.eid1

50 {
var index = 0;
while(index < MAXCOINS)
{

if(EWALLET[CID][index][0]==eid1)
55 {

EWALLET[CID][index][2] = vid;
index = MAXCOINS;

}
index = index + 1;

60 }
CUS_STATUS[CID] = IDLE;

}->Customer(CID);

the result on SendTouchStone channel changing the state to

IDLE.

C. Vendor Process

The process V endor(VID) shown in Tables 3 and 4 models

a vendor with ID VID. The vendor has a database, VENDORDB,

which is used to store touchstone. Variable VEN STATUS is

92

Table 2 Broker Process

Broker(BID) = [BRO_STATUS == IDLE &&
(||x:{0..(BROKERDBCONST-1)}
@(BROKERDB[x][0]==-1))]

5 BuyCoin?cid
{

Bcid = cid;
var index = 0;
while(index < BROKERDBCONST)

10 {
if (BROKERDB[index][0] == eid)
{

eid = (eid+1)%MAXEID;
index = BROKERDBCONST;

15 }
index = index + 1;

}
BRO_STATUS = BUYCOIN

}->Broker(BID)
20 [][BRO_STATUS == BUYCOIN]

SellCoin[Bcid]!eid.BID
{

Bcid = 0;
var index = 0;

25 while(index < BROKERDBCONST)
{

if (BROKERDB[index][0] == -1 &&
BROKERDB[index][1] == -1)

{
30 BROKERDB[index][0] = eid;

BROKERDB[index][1] = ISPOSITIVE;
index = BROKERDBCONST;

}
index = index + 1;

35 }
eid=(eid+1)%MAXEID;
BRO_STATUS = IDLE

}->Broker(BID)
[][BRO_STATUS == IDLE]

40 ReqTouchStone[BID]?vid.eid1
{

Bvid = vid;
var index = 0;
var flag = false;

45 while(index < BROKERDBCONST)
{

if (BROKERDB[index][0] == eid1)
{

flag = true;
50 index = BROKERDBCONST;

}
index = index + 1;

}
if(flag == false)

55 Beid = -1;
else

Beid = eid1;

BRO_STATUS = REQTSTONE
60 }->Broker(BID)

[][BRO_STATUS == REQTSTONE]
SendTouchStone[Bvid]!BID.Beid

{
Bvid = -1;

65 Beid = -1;
BRO_STATUS = IDLE

}->Broker(BID);

used to track the status of the vendor. A vendor can be in

IDLE, SPENDING, REQSTONE, VERIFICATION, VERIFIED or

RECVREQ state. Variables VEID, VAMT, VCID, VTSLOC and

VVID are used to store intermediate results during communi-

cation with broker or customer.

The vendor performs two major tasks; verifying ecoins

received from customer and providing touchstone to requesting

vendor.

The first task is initiated by the customer, cid. The vendor

receives e-coin ID, eid, the amount, amt and touchstone

location, tsloc, from customer on channel Spend. The ven-

dor changes to REQSTONE status if the vendor does not

have the touchstone (tsloc! = V ID) otherwise the vendor

changes to status VERIFIED . Recall, a touchstone is used

to verify ecoins in the Netpay protocol. If the vendor is

in REQSTONE status, the vendor requests touchstone from

vendor or broker V tsloc[V ID] on channel ReqTouchStone.

Initially, if the ecoins in the chain has not been spent, the

broker will have the touchstone location. Therefore, the vendoe

will request touchstone location from the broker. The state

vendor changes to VERIFICATION. The vendor V tsloc[V ID]
replies on channel SendTouchStone which changes the state

of requesting vendor to VERIFIED. The vendor can then reply

to the customer on either channel Approval (Table 4, lines 25

to 34) or Disapproval (Table 4, lines 36 to 39).

The second task for the vendor is to send touchstone to

requesting vendor. A request for touchstone of an ecoin,eid,

from vendor, V ID, to vendor, V tsloc[V ID], is modeled using

channel ReqToucStone. This event is enabled when a vendor

is in IDLE status. This event stores the details of the touchstone

and changes the status to RECVREQ. This enables the reply

to the requesting vendor on channel SendTouchStone. The

status will change to IDLE.

The Netpay process is composed of customer, vendor and

broker process. There are three vendors, two customers and

one broker in this model. The next section will look at

the correctness of this protocol. This model will be used to

prove three properties namely chain of trust, preventing double

spending and non-blocking behaviour.

V. CORRECTNESS OF THE NETPAY PROTOCOL

The section assumes that we have cooperative customers

and vendors who adhere to the protocol. The touchstone and

payword are not stored together in the client side Netpay

protocol. Validity of an ecoin is dependent on the touchstone.

Vendor or Broker stores the touchstone for each payword and

the customer stores the payword. The customer will store the

touchstone location only. In that case we want to verify that

an ecoin remains valid. To prove this, we will show that

for any ecoin there exists a chain of touchstone locations

that will lead to the broker who issued the ecoin. We will

show existence of such a chain, even though it cannot be

reconstructed from locally available information. In the Server-

side Netpay protocol, the touchstone and payword are stored

together at a trusted party so there was no need to prove the

93

Table 3 Vendor Process

Vendor(VID) = [VEN_STATUS[VID] == IDLE &&
(||x:{0..(VENDORCONST-1)}@
(VENDORDB[VID][x]==-1))]

5 Spend[VID]?cid.eid1.amt.tsloc
{

var flag = true;
Vcid[VID] = cid;
Veid[VID] = eid1;

10 Vamt[VID] = amt;
if(tsloc != VID)
{

VEN_STATUS[VID]=REQTSTONE;
Vtsloc[VID] = tsloc;

15

}else if(tsloc == VID)
{

var index = 0;
while(index < VENDORCONST)

20 {
if(VENDORDB[VID][index] == eid1)
{
VEN_STATUS[VID]=VERIFIED;
index = VENDORCONST;

25 flag = false;
}
index = index + 1;

}
}

30 }->Vendor(VID)
[][VEN_STATUS[VID] == VERIFICATION]
SendTouchStone[VID]?vid.eid1

{
var index = 0;

35 if(eid1 == Veid[VID])
{

VEN_STATUS[VID]=VERIFIED;
while(index < VENDORCONST)
{

40 if(VENDORDB[VID][index] == -1)
{
VENDORDB[VID][index] = eid1;
index = VENDORCONST;

}
45 index = index + 1;

}
}
else

VEN_STATUS[VID]=IDLE;
50

}->Vendor(VID)
[][VEN_STATUS[VID] == RECVREQ]
SendTouchStone[Vvid[VID]]!VID.Veid[VID]

{
55 Veid[VID] = -1;

VEN_STATUS[VID]=IDLE
}->Vendor(VID)

[][VEN_STATUS[VID] == REQTSTONE]
ReqTouchStone[Vtsloc[VID]]!VID.Veid[VID]

60 {
VEN_STATUS[VID]=VERIFICATION;

}->Vendor(VID)

Table 4 Vendor Process (continued)
[][VEN_STATUS[VID] == IDLE]

ReqTouchStone[VID]?vid.eid1
{

Vvid[VID] = vid;
5 var index = 0;

var flag = false;
while(index < VENDORCONST)
{

if (VENDORDB[VID][index] == eid1)
10 {

flag = true;
VENDORDB[VID][index] = -1;
index = VENDORCONST;

}
15 index = index + 1;

}
if(flag == false)

Veid[VID] = -1;
else

20 Veid[VID] = eid1;
VEN_STATUS[VID]=RECVREQ

}->Vendor(VID)
[][VEN_STATUS[VID] == VERIFIED &&
Vamt[VID] == ISPOSITIVE]

25 Approval[Vcid[VID]]!VID.Veid[VID].ISPOSITIVE
{

VEN_STATUS[VID]=IDLE
}->Vendor(VID)

[][VEN_STATUS[VID] == VERIFIED &&
30 Vamt[VID] == ISPOSITIVE]

Approval[Vcid[VID]]!VID.Veid[VID].ISZERO
{

VEN_STATUS[VID]=IDLE
}->Vendor(VID);

35 [][VEN_STATUS[VID] == VERIFIED]
Disapproval[Vcid[VID]]!VID.Veid[VID]

{
VEN_STATUS[VID] = IDLE;

} ->Vendor(VID)
40

validity of payword. Instead, we proved in [5] that the ecoin

will not be lost by vendors.

Furthermore, we show that at most one vendor can have a

touchstone of an e-coin. The length of an e-coin, and thus its

amount, is abstracted, and we assume that subtracting from

the amount is dealt correctly by the trusted vendor. The only

remaining way to double spend would be to have touchstone

of one ecoin at two different vendors. We show that an e-coin

cannot be spent twice at different vendors. Finally, we show

that there is a deadlock in the protocol and we will present a

solution for this.

A. Chain of Trust

Touchstones are transferred from broker to vendor and from

one vendor to another vendor, and the customer keeps track of

the location of the touchstone. An ecoin without a touchstone

will make that coin invalid. The overall property that we will

prove is that the location of the touchstone as recorded by the

customer is correct at the end of the transaction.

For the client-side Netpay protocol, the following two

properties can be shown to hold:

1) If the customer is in the IDLE or BUYCOIN state, then

the customer will have the location of the touchstone

94

pointing to the vendor with the touchstone.

2) If the customer is in the SPENDING state, then the cus-

tomer will have the location of the touchstone, or it will

point to the vendor which will receive the touchstone

after the next exchange.

The following lists the goals defined in the PAT model checker:

• Property 1 shows for each e-coin ID held by a customer,

that there exists a corresponding e-coin in the broker

database.

• Property 2 shows for each e-coin ID held by a cus-

tomer, that broker will have a corresponding touchstone

if the touchstone location in the Ewallet database is

BROKERID.

• Property 3 shows for each e-coin ID held by the customer,

that if the location of the touchstone is not the broker ID

and the customer status is IDLE or BUYCOIN, then there

exists a corresponding touchstone at that location.

• Property 4 shows for each e-coin ID held by the customer,

that if the location of the touchstone is not equal to the

broker ID and the customer status is SPENDING, then

there exists a corresponding touchstone at that location or

at a location stored in variable Vtsloc[VID]. This means

that while the customer may have information that is

temporarily not valid, the correct location is stored in

an auxiliary variable.

The properties 1 - 4 were verified using the PAT model

checker.

Property 1 Chain of Trust - Comparison of customer and

broker databases

#define Chain_of_Trust_1(&&y:{0..(MAXCOINS-1)};x:{0..
(CUSTOMERS-1)}@(EWALLET[x][y][0]==-1 ||
(||z:{0..(BROKERDBCONST-1)}
@(EWALLET[x][y][0] == BROKERDB[z][0]))));

#assert Netpay |=[] Chain_of_Trust_1 ;

Property 2 Chain of Trust - Comparison of customer and

broker databases

#define Chain_of_Trust_2(&&y:{0..(MAXCOINS-1)};x:{0..
(CUSTOMERS-1)}@(EWALLET[x][y][2]!=BROKERID ||
(||z:{0..(BROKERDBCONST-1)}
@(EWALLET[x][y][0] == BROKERDB[z][0]))));

#assert Netpay |=[] Chain_of_Trust_2 ;

Property 3 Chain of Trust - Comparison of customer and

broker databases

#define Chain_of_Trust_3(&&y:{0..(MAXCOINS-1)};x:{0..
(CUSTOMERS-1)};z:{0..(VENDORS-1)}
@(EWALLET[x][y][2]!=z ||CUS_STATUS[x] != IDLE
||(||w:{0..(VENDORCONST-1)}@
(EWALLET[x][y][0] == VENDORDB[z][w]))));

#assert Netpay |=[] Chain_of_Trust_3 ;

Property 4 Chain of Trust - Comparison of customer and

broker databases

#define Chain_of_Trust_4(&&y:{0..(MAXCOINS-1)};x:{0..
(CUSTOMERS-1)};z:{0..(VENDORS-1)}@(EWALLET[x][y][2]
!=z||CUS_STATUS[x] != SPENDING || Vtsloc[z] == -1
|| Vtsloc[z] == BROKERID||(||w:{0..(VENDORCONST-1)}
@(EWALLET[x][y][0] == VENDORDB[z][w] ||
EWALLET[x][y][0] == VENDORDB[Vtsloc[z]][w]))));

#assert Netpay |=[] Chain_of_Trust_4 ;

B. Double Spending

Double spending means spending an ecoin twice. A pay-

ment protocol should prevent customers from double spending.

The Client-side Netpay protocol prevents double spending

through the use of touchstone and an index. Recall that a

touchstone is the root payword in a chain of ecoins and an

index is the index of the payword in that chain. Index also

indicates the number of hashes to apply on the payword to get

a result equal to touchstone. Note, that because we abstract

the exact amount of an e-coin it can be spent as long as

the amount is ISPOSITIVE. The customer can double spend

at two different vendors if the vendors have the touchstone

for that ecoin. We prove that for each chain of e-coins there

exists a touchstone at a vendor at any time. This is expressed

in Property 5: No two vendors have the touchstone for the

same e-coin ID. A Windows 8, i7 processor, 3.2 GHz and 6

GB RAM machine took about eight minutes to verify all 5

properties.

Property 5 Double Spending

#define DoubleSpending(&&x:{0..VENDORS-1};a:{0..
VENDORS-1}@(&&y:{0..VENDORCONST-1};z:{0..
VENDORCONST-1}@((VENDORDB[x][y]==-1||
VENDORDB[a][z]==-1 || a==x)||
(VENDORDB[x][y]!=VENDORDB[a][z]))));

#assert Netpay |=[] DoubleSpending;

C. Non-Blocking Behavior

As described in section IV, processes use channels for com-

munication. A sender and receiver process need to synchronize

on a channel. A sender process will not be able to send unless

the receiver is ready to receive. This means that the sender

process will be blocked if there is no receiver process enabled.

If this blocking is indefinite, then the protocol is in a deadlock.

There exists a deadlock in the client-side Netpay protocol. This

has been verified using the PAT model checker by the property,

#assert Netpay deadlockfree; .

PAT did identify a deadlock in the protocol. Figure 1 depicts

the trace that was generated by PAT model checker. This

happens when two vendors are in REQSTONE status and there

is a circular wait for these vendors to be in IDLE state. The

deadlock occurs as follows: Customer(0) buys ecoins with

Broker(3) and spends ecoins with ID 0 at vendor(0). Ven-

dor(0) requests and receives touchstone from broker. Vendor(0)

95

��������	
� ���
��	�� ������	
� ��������	�� ��������	

��������

��������
�����������

�����
�����������
�����������

�� !���"�����

����!���"�����

#����$%�
�����������

#����������&'��!���

�������

��������
������������

�����
�����������������������

�� !���"�����

����!���"�����

#����$%�
������������

#����������&'��!���
�����

�����������

�����
������������

Fig. 1. Deadlock in Netpay protocol

TABLE I
COMPARISON

Properties Server-Side Client-Side
Chain of Trust Valid Valid

Double Spending Valid Valid
Non-Blocking Behaviour Invalid Invalid

approves payment for Customer(0) and provides balance for

ecoins as ISPOSITIVE. Customer(0) updates the touchstone

location with the ID of Vendor(0). Likewise, Customer(1)

buys ecoins with ID 1 and spends at Vendor(1). Ecoins with

ID 1 is not fully spent. Customer(0) spends ecoins with ID

0 at vendor(1) while Customer(1) spends ecoins with ID 1

at Vendor(0). Vendor(0) has to request the touchstone for

ecoin ID 1 from Vendor(1) and Vendor(1) has to request the

touchstone for ecoin ID 0 from Vendor(0).

This protocol has been corrected by adding a separate

process for the vendor-side to handle reply for touchstone re-

quests. Table 5 illustrates process V endorP (VID) where VID

is the vendor ID. Each vendor will now have two processes

running: V endorP (VID) and V endor(VID). The description

of the protocol does not specify how many processes a vendor

should have [8], although it is presented as if it were a single

process.

D. Comparison of Client-Side and Server-Side Netpay

This section compares the client-side and server-side Netpay

protocol based on the results of model checking. Server-side

Netpay protocol was modeled and verified in [5] where as

the client-side Netpay in this. The comparison criteria will be

the properties verified for these two variation of the Netpay

protocol; chain of trust, double spending and non-blocking

behaviour.

The comparison is based on where the customers and ven-

dors are cooperative. In an environment where the customers

or vendors are non-cooperative, some of the properties will not

Table 5 Vendor Process

VendorP(VID) = [VEN_STATUS[VID] == RECVREQ]
SendTouchStone[Vvid[VID]]!VID.Veid[VID]{

Veid1[VID] = -1;
5 VEN_STATUS_P[VID]=IDLE}->VendorP(VID)

[]
[VEN_STATUS[VID] == IDLE]ReqTouchStone[VID]?
vid.eid1{

Vvid[VID] = vid;
10 var index = 0;

var flag = false;
while(index < VENDORCONST)
{

if (VENDORDB[VID][index] == eid1)
15 {

flag = true;
VENDORDB[VID][index] = -1;
index = VENDORCONST;

}
20 index = index + 1;

}
if(flag == false)

Veid1[VID] = -1;
else

25 Veid1[VID] = eid1;
VEN_STATUS_P[VID]=RECVREQ}->VendorP(VID);

hold. Like, currently the protocol caters for if a customer wants

to spend twice or an ecoin with zero amount. However, if we

would enable a customer to send e-coins that does not exist

in the broker, it will cause a deadlock. The current protocol

provides no way for a broker to communicate back to vendor

that an e-coin does not exist. This problem is, however, easily

addressed by adding one more case for a declined payment.

Also, if the customer provides the wrong touchstone location,

then the vendor has no way to locate the touchstone. This

problem can be addressed by adding communication to retrieve

the touchstone from the broker and then continue to process

the payment normally.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper modeled the client-side Netpay micropayment

system using CSP language. The PAT model checker was used

to verify three properties namely chain of trust, preventing

double spending and absence of deadlock. The first two

properties verified did hold where as the last did not. This

shows that there was a deadlock in the protocol. We proposed

a solution where a vendor should have two processes; one

for customer to spend e-coins and one for replying requesting

vendors with touchstone. The deadlock was resolved when the

property was verified again.

The verification was performed under the strong assumption

that customers and vendors are cooperative. Future research

involves proving whether the chain of trust and preventing

double spending holds when the customers and vendors are

non-cooperative.

REFERENCES

[1] M. Bastiaan. Preventing the 51%-attack: a stochas-
tic analysis of two phase proof of work in bitcoin.

96

http://referaat.cs.utwente.nl/conference/22/paper/7473/preventing-
the-51-attack-a-stochastic-analysis-of-two-phase-proof-of-work-in-
bitcoin.pdf, 2015.

[2] W. Beukema. Formalising the bitcoin protocol.
http://referaat.cs.utwente.nl/conference/21/paper/7450/formalising-
the-bitcoin-protocol.pdf, 2014.

[3] Y. Cai, J. Grundy, J. Hosking, and X. Dai. Software Architecture
Modeling and Performance Analysis with Argo/MTE. In SEKE 2004,
1990.

[4] K. Chaudhary and X. Dai. P2P-NetPay: An off-line Micro-payment
System for Content Sharing in P2P-Networks. JETWI, 1(1):46–54,
August 2009.

[5] K. Chaudhary and A. Fehnker. Model checking a server-side micro
payment protocol. In Formal Methods for Industrial Critical Systems -
20th International Workshop, FMICS 2015, Oslo, Norway, June 22-23,
2015 Proceedings, pages 96–110, 2015.

[6] X. Dai and J. Grundy. Architecture for a Component-Based, Plug-
in Micro-payment System. In APWeb2003, pages 251–262. LNCS,
Springer, April 2003.

[7] X. Dai and J. Grundy. Three Kinds of E-wallets for a NetPay Micro-
payment System. In WISE 2004. LNCS 3306, 2004.

[8] X. Dai and B. Lo. NetPay - An Efficient Protocol for Micropayments
on the WWW. In AusWeb 99, Australia, 1999.

[9] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and P. Sobalvarro. The
Millicent Protocol for Inexpensive Electronic Commerce. In www95,
December 1995.

[10] R. Hauser, M. Steiner, and M. Waidner. Micro-payments Based on ikp.
In SECURICOM 96. LNCS, 1996.

[11] A. Herzberg and H. Yochai. Mini-pay: Charging Per Click on the Web.
1996.

[12] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[13] N. Nisan, S. London, O. Regev, and N. Camiel. Globally Distributed
Computation Over the Internet. The POPCORN project. In ICDCS’98.
IEEE, 1998.

[14] R. Rivest and A. Shamir. PayWord and MicroMint: Two Simple
Micropayment Schemes. pages 307–314. LNCS, 1998.

[15] J. Sun, Y. Liu, and J. Dong. Protocol Analysis Toolkit.
http://www.comp.nus.edu.sg/ pat/.

[16] K. Wei, A. Smith, Y. Chen, and B. Vo. WhoPay : A Scalable
and Anonymous Payment System for Peer-to-Peer Environments. In
Distributed Computing Systems. IEEE, 2006.

[17] B. Yang and H. Garcia-Molina. PPay: Micro-payments for Peer-to-Peer
Systems. In CSS 2003, pages 300–310, 2003.

[18] E. Zou, T. Si, L. Huang, and Y. Dai. A New Micro-payment Protocol
Based on P2P Networks. In ICEBE’05, 2005.

97

